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Abstract: Service-oriented architectures focus mainly on the automatic 
configuration of the attributes that describe the different layers involved in service 
communication and treat service instances monolithically - they either exist in the 
network which means that they are fully usable or they do not. This approach does 
not work well in environments where services are insufficiently dependable and 
the types of services used are not well known or standardized. This paper proposes 
a model to compose complex services from independent components with basic 
functionality that are organized as minimal services in the same service-oriented 
architecture. The approach promises to better handle run-time diagnostics and on-
the-fly (re-)composition of service functionality in networks with highly dynamic 
capabilities. 
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1 Introduction 

Information and communication technology has become ubiquitous in the last two 
decades. The cheaper production cost and increased networking capabilities allow 
mobile embedded devices to pervade areas of computing that used to have fixed 
environments and help to make them more flexible and dynamic. 

Because of the plethora of new devices entering traditional computer networks and the 
differences in their capabilities and non-functional properties such as availability and 
performance, there is the need for standards to configure the communication layers that 
are outside of the semantics of the services provided by those devices. A service client or 
a server is only interested in the description of the actual service usage. For the sake of 
simplicity every other detail of network communication should be transparent. Quite a 
few frameworks have emerged that try to define the different layers involved in service 
communication and offer protocols to automatically configure the layers in 
decentralized, dynamic networks. What these frameworks describe is commonly known 
as a service-oriented architecture. 
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For the purpose of connecting cheap and resource restricted systems the technologies 
used in a service-oriented architecture need to scale. Only minimal overhead over the 
requirements for taking part in the network is acceptable. It has been shown in [DK08] 
that the requirements proposed by the Zeroconf working group in [Wil02] and their 
implementation described in [CS05] provide a good compromise between functionality 
and hardware requirements and can be implemented with very little overhead. 

Zeroconf essentially takes care of IP interface configuration, the translation between host 
names and IP addresses and the discovery of services. It does that using the well 
standardised concepts of AutoIP, multicast DNS and DNS-Based Service Discovery and 
thus only depends on the existence of Multicast IP and User Datagram Protocol (UDP). 
Following the findings of [DK08] it can generally be said that if a device is able to be a 
part of an IP network it is also able to be a part of a zeroconf network. This makes 
zeroconf an ideal framework for realizing service-oriented architectures in which the 
participating nodes are equipped with limited memory and processing power. 

2 Problem statement 

Zeroconf focuses mainly on the automatic configuration of the attributes that describe 
the different layers involved in IP based service communication. Service instances are 
treated monolithically - they either exist in the network which means they are fully 
usable or they do not. Their functionality in all its possible complexity is seen as a 
whole. This works well in environments where services are sufficiently dependable and 
the types of services used are well known and standardized. 

But by using this approach it is difficult to quantify non-functional attributes of services 
that are of key importance in modern dynamic service networks like dependability, fault 
proneness, fault tolerance and resilience - all of them having impact on the survivability 
of a certain service. Guaranteeing redundancy is expensive if the failure of one 
component of the service equals the failure of the service as a whole and the replacement 
of those complex service instances can prove to be non-trivial. It is also difficult to 
monitor the state of service instances: Zeroconf provides pretty good mechanisms to 
detect the availability of service instances, however if those mechanisms are only used 
on complex services seen as single units a lot of their potential remains unused. 

We believe that if a complex service can be described by an optimized composition of 
components with minimized functionality, those smaller components are easier to 
monitor, maintain and replace in case of failure. If the functionality is basic enough they 
might even be replaced by components that are used by different complex services but 
belong to the same class of functionality. Given m complex services realized by n 
components with basic functionality, can one determine the maximum number k of 
components that may fail while all m services can still be provided? How many 
components may fail so that a certain service can still be provided? 
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Models are needed to extract the different functionalities of complex services and to 
quantify their impact on the service functionality as a whole. This might lead to more 
dependable services that are cheaper to maintain and - using the techniques of a service-
oriented architecture - can sustain their functionality longer without manual interaction. 
The resulting service-oriented architecture can be called a survivability-oriented 
architecture. As in web service composition [MM04], the appropriate methods for 
component composition must be used.  

3 Proposed solution 

We claim that every complex service can be divided into disjunctive components with 
minimized functionality. Those components - being instances of simpler services - can 
be modeled as regular service instances in a service-oriented architecture, e.g. Zeroconf. 
They automatically configure their network parameters and propagate their availability 
to the other nodes and thus benefit from the same techniques as the complex service 
instance they provide. The model of such a complex service is as follows: 
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S is defined as the functionality of the complex service we want to describe while si 
being the functionality of the simple component i. C contains the composition rules for 
all the si that make up the service. As long as the service instance S is able to discover all 
its si in the network it can compose them via the rules C and is usable to service clients. 

The simple components have a small set of functionalities and vary in their dependence 
on the context they operate in. The context sensitivity is crucial to determine the 
interchangeability of a certain component. If the functionality of a component provides 
is basic enough and if it is independent of the context it operates in, a component can be 
used to build many different complex services. We call this characteristic service-
agnostic because the component itself operates the same way, independent of the 
complex service that leverages its functionality, it does not even need to “know'” the 
service that uses it. In contrast, it can be said that if a component with basic functionality 
is in any degree dependent on the context it operates in - e.g. location, time, temperature, 
type of complex service that uses it, availability of special hardware - it cannot be 
trivially replaced by components of the same functionality. So we extend the description 
of complex service functionality in  (1) as follows: 

! 

S j = {{s
1 j ,s2 j ,...,snj},{t1,t2,...,tn},C}      (2) 

The sij now describe the simple components that are context-sensitive, ti are the service-
agnostic components. Both of them compose the complex service functionality S by the 
rules defined in C. Service-agnostic components provide several key-advantages: 

1. They can easily be replaced in case of failure as their functionality is only bound to 
their existence in the network. This makes redundancy trivial. 
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2. By their very nature of providing independent, basic abstract functionality they can 
be used by many services at the same time. 

Thus, as long as there is at least one service-agnostic instance of a special type of service 
left, all the complex services relying on the functionality provided by that instance will 
remain functional. On the other hand, it is also possible to introduce new services to an 
already existing service network without deploying additional resources: New services 
could be composed only from service-agnostic components. This is illustrated in the 
following example: 
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As long as we have at least one instance for the service-agnostic functionality t1 all three 
services can remain functional. If s22 fails however, S2 cannot maintain its functionality. 
Service S3 on the other hand can be seen as a new service. In an already working service 
network that provides S1 and S2, S3 can be deployed with an additional need for resources 
only for the sake of redundancy. All of its basic functionalities are already provided by 
S1 and S2. 

The simple example in (3) shows the advantages of service-agnostic components: While 
the minimum amount of instances of any context-sensitive component si necessary to 
provide all services in the network equals the number of Sj needing it, the minimum 
amount of instances of the service-agnostic component ti is always one. Thinking of 
redundancy, if n instances of the service-agnostic component ti exist, (n-1) may fail 
while leaving all services intact. In case of any context-sensitive component sij however 
this just guarantees the availability of Sj. So providing redundancy of service-agnostic 
components helps every service using them while in the case of context-sensitive 
components this is only true for single services. 

These thoughts lead to the conclusion that complex services that are composed of a 
higher degree of service-agnostic components can ultimately be more survivable since 
their redundancy is distributed across the whole service network and the replacement of 
failing functionality is trivial. It should be encouraged to maximize the percentage of 
independent, service-agnostic functionality. This approach is also feasible for other non-
functional attributes of services than redundancy. However it has to be investigated, to 
what degree complex services actually can be modeled with service-agnostic 
components as the benefits for different attributes such as availability may vary [JN56]. 
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4 Example 

Thinking of an IP-based, service-oriented network this model can be applied to various 
service classes, all of them being propagated and discovered with zeroconf techniques. 
Think of a service that reads the temperature from sensors in a room and - after 
analyzing the data - regulates the heating in that room. The service could be composed of 
four subtypes of services: temperature sensors, heating regulators, calculation of the 
adjustment and presentation of the frontend. While obviously the temperature sensors 
and heating regulators are context-sensitive regarding their location, the calculations can 
be carried out anywhere where there is enough computation power and also the frontend 
reading the sensors and setting the controls can be served by any service instance 
providing the presentation service. So if the frontend realizes that the last used 
calculation service is gone it can check the zeroconf network for other instances of that 
service and - if available – switch to using another one. 

5 Conclusion 

The proposed model provides a concept for survivable architectures. Although this paper 
focuses on redundancy, the fine granularity of the service description and distribution of 
their management among simpler, ideally service-agnostic nodes across the whole 
service network, is believed to improve other non-functional parameters of a complex 
service as well. The approach promises to better handle run-time diagnostics and on-the-
fly (re-)composition of service functionality in networks with highly dynamic 
capabilities. Furthermore, the variability of the service description provides more 
possibilities for composing service functionalities. If a vital part of the service breaks 
down, it might – depending on the application - be recomposed with reduced 
functionality thus facilitating graceful degradation which is in most cases more desirable 
than no service functionality at all. How the proposed approach handles those topics 
needs to be examined in further studies. 
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