
Experimental Responsiveness Evaluation of
Decentralized Service Discovery

Andreas Dittrich and Felix Salfner
Institut für Informatik

Humboldt-Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

Email: {dittrich|salfner}@informatik.hu-berlin.de

Abstract—Service discovery is a fundamental concept in service
networks. It provides networks with the capability to publish,
browse and locate service instances. Service discovery is thus
the precondition for a service network to operate correctly and
for the services to be available. In the last decade, decentralized
service discovery mechanisms have become increasingly popular.
Especially in ad-hoc scenarios – such as ad-hoc wireless networks
– they are an integral part of auto-configuring service networks.
Albeit the fact that auto-configuring networks are increasingly
used in application domains where dependability is a major
issue, these environments are inherently unreliable. In this
paper, we examine the dependability of decentralized service
discovery. We simulate service networks that are automatically
configured by Zeroconf technologies. Since discovery is a time-
critical operation, we evaluate responsiveness – the probability
to perform some action on time even in the presence of faults
– of domain name system (DNS) based service discovery under
influence of packet loss. We show that responsiveness decreases
significantly already with moderate packet loss and becomes
practicably unacceptable with higher packet loss.

I. INTRODUCTION

Computing and communication infrastructures have been
converging rapidly in the last decade. Increased networking
capabilities allow mobile and embedded devices to pervade
areas of computing that used to have fixed environments and
help to make them more flexible and dynamic. A plethora of
new devices with different capabilities is entering traditional
networks. On the other hand, we experience a ubiquity of con-
nectivity in traditional computing environments. This brings
the need for a unified architecture to connect all devices and
leverage the services they provide.

A network service in general is an abstract functionality
that is provided over the network. It can be leveraged by
using the methods of an interface on a specific instance
providing that service in the network. Historically, services
have existed in computer networks since the first networks
were constructed. The difference today is that in service-
oriented computing (SOC) protocols and interfaces are being
developed and deployed that provide standardized methods for
the different layers of service usage. Within every service-
oriented domain various layers of service usage need to be
defined and configured for successful operation of the service
network. These layers incorporate network addressing, service
discovery, service description, application and presentation [1].

The first service networks have been centrally adminis-
trated. In the last decade new technologies have emerged
with methods to automatically configure the various layers
of service usage. These methods are an integral part in
self-organizing ad-hoc environments where service networks
(and the service instances within) are shared by different
administrative domains with no central authority. In such
environments service auto-configuration provides a significant
benefit. In application domains where dependability is of an
essence (e.g., in catastrophe management) dependable auto-
configuring service networks are required. However, self-
organizing networks are frequently deployed with wireless
technology which is inherently unreliable. It is the goal of
this paper to investigate dependability of decentralized service
discovery in such networks.

The domains of service-oriented applications are diverse
but they share common concepts. One key concept that every
service network needs to provide is service discovery. Service
discovery involves service providers publishing and service
clients searching and locating service instances. If a service
cannot be discovered, its existence remains unknown and
clients cannot use it —it is unavailable for the client. Thus,
dependable service discovery is a prerequisite for dependable
service networks. Since discovery is a time-critical operation,
to be dependable it needs to provide reliable methods for
publishing and discovering service instances within time con-
straints.

In this paper, we focus on responsiveness. Responsiveness
is the probability of successful operation within deadlines
even in the presence of faults [2]. For service discovery,
responsiveness answers the following question:

For a service client C in a service network N, what
is the probability of successfully discovering m out
of n total service instances of service type T within
time interval t?

To date, no analytical models exist to evaluate responsive-
ness in auto-configuring networks. Rather than developing an
analytical model, this paper provides results from simulation
experiments that evaluate responsiveness of decentralized ser-
vice discovery in unreliable networks. We set up a virtualized
testbed and used de-facto standard technologies proposed by
the Zeroconf working group ([3], [4]) to automatically config-

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

ure the service network. All systems in simulation ran common
Linux operating systems and Zeroconf network stacks and are
thus representative for systems in real life applications.

The rest of this paper is structured as follows. In Section II
we provide references to related work and other approaches to
dependability evaluation in auto-configuring service networks.
Details on service discovery with a focus on decentralized
environments are given in Section III. The experimental setup
and scenarios used in this paper are described in Section IV.
In Section V we show results for the experimental scenarios
and discuss them. The paper is concluded and future work is
discussed in Section VI.

II. RELATED WORK

An introduction to fault tolerance in distributed systems is
covered in [5]. Responsiveness as a dependability property
is best described in [2]. A survey on existing approaches to
service discovery systems in ubiquitous computing environ-
ments can be found in [6]. It covers all well-known existing
approaches to auto-configuring service networks.

Dependability evaluation in auto-configuring service net-
works has been carried out on various dependability properties,
e.g., robustness of service discovery with respect to discov-
ery delay times [7] or cost-effectiveness of network address
configuration [8]. The performance and cost-effectiveness of
service discovery using local link multicast name resolution
(LLMNR) [9] and multicast domain name system (mDNS)
[10] with respect to network traffic generation and energy
consumption is evaluated in [11]. This paper covers no effects
of packet loss.

The research described in [12] is closely related to the
topic of this paper. Here, the robustness of existing discovery
mechanisms is evaluated under increasing failure intensity.
However, responsiveness is not covered in particular. Also,
the technologies used in experimental evaluation cover Service
Location Protocol (SLP) [13] and Universal Plug-and-Play
(UPnP) [14] but not Zeroconf, which is the focus of this paper.
A detailed description of Zeroconf can be found in [15].

Contemporary approaches to service networks that demon-
strate the need for a responsive service discovery pave the
way for many new scenarios. For example, in [16] a model is
proposed for survivable services-oriented applications based
on numerous redundant services. To show the diversity of
those approaches [17] should be mentioned, which describes
a resource discovery service for component deployment. Sce-
narios like this provide a further motivation for this paper.

III. SERVICE DISCOVERY

The objective of service discovery is to enumerate instances
of a given service type. Instances are identified by a human-
readable name or a universally unique identifier (UUID).
Service discovery additionally provides a description of each
enumerated instance which holds more specific information
for a client to locate the instance in the network, bind to it
and use its provided service. It is thus a two-step resolution
process that first resolves a service type to a number of

instance identifiers and then resolves an instance identifier to
an instance description.

The resolution process is not necessarily carried out in two
steps on the network. Enumerating and describing service
instances is in fact frequently performed within one service
discovery request and its response. However, especially in
decentralized service networks it is important to distinguish
between the two steps.

The amount of description varies depending on the in-
formation already included within the service identifier and
prior knowledge of service clients. In general, a service client
needs at least the network location of a providing instance, for
example the network address and port to connect to. On top of
that, a description can also provide a communication protocol
and information specific for the requested service type.

A. Decentralized service discovery

In centralized service networks, discovery is handled by
three different entities: the service client, service provider and
service registry. Once a provider connects to the network, it
publishes its presence to the registry and provides the registry
with a description that is sufficient for a client to connect to
the provider. Clients query the registry by sending a unicast
discovery request for a service type. The registry answers the
queries by sending a unicast discovery response which holds
all instances of the requested service type that have registered.
Subsequent service communication is done directly between
service client and instance.

However, the existence of a (single) designated registry is
problematic with respect to scaling, fault tolerance and has
to be known a-priori. In decentralized service discovery the
resolution of service types and possibly even instance identi-
fiers is done collaboratively by the entire network. The first is
mandatory, the latter can also be done in direct communication
between service client and provider to reduce network load.

In a decentralized service network, a client that is interested
in the functionality given by a specific service type queries the
network or a subset of network nodes by sending a discovery
request via broadcast or multicast. All nodes that may answer
the query respond with a discovery response that is sent to
the network via multi- or broadcast or directly to the client
via unicast.

Replying by multi- or broadcast is useful to reduce multiple
identical responses. Also, it updates information about present
service instances on all nodes receiving the response and might
suppress subsequent requests by other clients for the same
service type. Replies sent by unicast make sense if they contain
information that is only valid for the requester.

What messages are being sent by unicast or multi-/broadcast
is basically a trade-off between network load and service data
distribution and this trade-off is being evaluated differently
in common discovery protocols. A sound compromise seems
to be to resolve service types via multi- or broadcast and, if
necessary, to resolve instance identifiers via unicast.

When doing decentralized discovery, the absence of the
registry as an authoritative entity is the main difference to

centralized discovery. Every service provider is authoritative
when queries resolve to its own instance identifiers or iden-
tifier descriptions. This means that in centralized networks a
discovery request is successful when the registry responded to
a request. In decentralized networks, depending on the needs
of the requesting client, in some scenarios all service providers
need to respond for successful operation. This introduces
delays to discovery. Responsiveness, being the probability to
perform some action on time even in the presence of faults, is
hence influenced by this delay. Packet loss is a second major
impact factor, especially in wireless environments. Another
side-effect of packet loss is that packet retransmissions result
in an increased network load.

Although security issues are not covered in this paper,
it should be mentioned that the lack of a single authority
in decentralized service networks makes administration and
control of the instance identifier space more difficult. Ad-
ditional measures need to be implemented to guarantee the
trustworthiness of service discovery.

B. Zeroconf service discovery

So far, although the various existing approaches mentioned
in Section II follow the same general concept for service
discovery (described in Section III-A) they remain technically
incompatible. Hence, for this paper, one architecture for ser-
vice discovery had to be chosen. Because of its low overhead,
versatility and compatibility with existing, widely deployed
services [1], Zeroconf was chosen as a protocol stack for the
service network in the following experiments.

The Zeroconf stack works on top of the Internet Protocol
(IP) and has a very low overhead compared to other service
network stacks. It still provides complete auto-configuration
of all layers up to service discovery. A thorough evaluation of
service network stacks and their overhead can be found in [1].
In recent years, Zeroconf became increasingly popular and by
today is provided by numerous network services like printing,
file or screen sharing and others. Linux and Macintosh operat-
ing systems are delivered with Zeroconf technology enabled by
default and implementations exist for virtually every operating
system.

The details of the Zeroconf service network stack are
described in detail in [18]. In short, Zeroconf handles the
three lower layers of service networks [14] and uses specific
protocols to automatically configure them and to provide their
functionality.

1) Addressing – To take part in the network, every node
needs a unique network address. The protocol used for
auto-configuration is the ubiquitous Automatic Private
IP Addressing (APIPA) which is better known as AutoIP
and standardized in [19]. AutoIP introduces special types
of Address Resolution Protocol (ARP) [20] messages
called ARP probes.

2) Name resolution – Service identifiers need to be resolved
to network addresses for clients to be able to connect and
bind to the services. Zeroconf uses a multicast version of
the domain name system (DNS) [21] called mDNS [10].

TABLE I
TECHNICAL SPECIFICATION OF SIMULATION SYSTEMS

Xen host Zeroconf nodes

Processor type Intel R© Xeon R© X5365 n/a
Processor frequency 3000 Mhz n/a
Cores 2 ∗ 4 1
Memory 16 GB 48 MB
Operating system Linux openSUSE 11.0 Linux Debian 5.0.3
Architecture x86 64 x86 64
Kernel version 2.6.25.20-0.5-xen 2.6.26-2-xen-amd64
Xen version 3.2.1 16881 04-4.3 n/a
Avahi version n/a 0.6.23-3lenny1

This protocol can configure names for service instances
and resolve them to network addresses.

3) Discovery – To reduce the number of different protocols,
Zeroconf uses a DNS-based service discovery mecha-
nism (DNS-SD) [22]. All service instance identifiers as
well as service types are handled as DNS names and
as such can be resolved by mDNS on the lower layer.
DNS-SD is merely an extension to DNS that provides
additional record types for service discovery.

4) Description – The description needed to connect a
service includes the network address and port. This
functionality is also provided by DNS-SD. DNS-SD
can provide a more complete description of a service
instance although this is not of importance within the
context of this paper.

In Zeroconf, most discovery requests and responses are sent
via multicast to ensure a high distribution of the data. A single
service discovery, as carried out in the following experiments
consists of a single multicast request with multiple retries
1, . . . , i. The waiting time before a retry is 2i−1 seconds.
During that time the service client constantly waits for re-
sponses from service providers. Upon arrival of responses,
it includes these known answers in subsequent requests to
suppress duplicate responses.

IV. EXPERIMENTAL SETUP

All experiments were carried out in a virtual testbed on a
machine running the Xen hypervisor [23]. Service nodes were
run as unprivileged guest domains with the same base system
to boot from. Technical specifications of the systems are listed
in Table I.

The service network for the nodes was realized by connect-
ing them to a virtual network bridge on the Xen host. This
network was solely used for service discovery communication.
The topology reflects a fully connected, single-hop network
where all packets sent among nodes pass the bridge between
them. On this bridge, packet loss was realized by randomly
dropping packets at a given rate. The rate was the same for
every packet. No additional faults were injected on the bridge.

The service nodes were running a minimal installation of
the Debian Linux operating system [24]. At boot time, they
were only running the base system and Zeroconf daemons to

configure the service network and do service discovery. On
a dedicated client node, a secure shell (SSH) daemon was
additionally run for remote discovery execution. This daemon
ran on a second interface which was not connected to the
virtual bridge so that traffic on this interface did not interfere
with service network traffic. Memory requirements for the
guest systems were very low (c.f. Table I).

To automatically configure the service network, software
developed by the Avahi project [25] was used. Avahi is an im-
plementation of the protocols recommended by the Zeroconf
working group for automatic configuration of IP service net-
works. An AutoIP [19] daemon set a unique IP address within
the 169.254.0.0/16 subnet and a mDNS [10] daemon handled
service name resolution for DNS-based service discovery [22].
Due to the fact that Avahi was used for auto-configuration, all
nodes could run from copies of the same disk image and no
manual administration was necessary after booting.

Discovery requests were run from a single dedicated dis-
covering node – or service client. All other nodes acted as
service providers responding to discovery requests. Discovery
times were measured on the client directly before the request
was sent and directly after responses were received to measure
user-perceived responsiveness. Thus, time synchronization be-
tween nodes in the service network was not necessary.

No nodes joined or left the network so no reconfiguration
of the network layers occurred during measurements which
would interfere with discovery operation. Discovery of a
service was considered successful when a certain percentage
of instances had been discovered. Discoveries were aborted
(considered failed) after 20 seconds waiting time. This value
was chosen because in Zeroconf, the time between retries
doubles after each retry to reduce network load. So after 15
seconds we have reached a total number of five discovery
requests and the next one would be sent after 31 seconds.
Waiting time was extended by additional 5 seconds to ensure
delivery of all responses.

As mentioned in Section III, after service discovery a client
should have enough information to contact a service instance.
Hence discovery in our case meant resolving the IP address
and port for every service instance.

A. Justification of experimental setup

The chosen network model is a simplified version of a fully
connected, wired Ethernet network. On those networks, packet
loss usually is no issue. We are aware that unreliable networks
– especially wireless networks – have a complex behavior and
most of the faults occurring in those networks (e.g.: bursts of
packet loss, delay, jitter) have a strong functional dependency.
However, we wanted to control the unreliability of the network
as much as possible and, therefore, included random packet
loss at a given rate, independent of the traffic occurring on
the link and whether the preceding packet was lost. Our
results hence yield insight on average behavior. Packet delivery
time, which is in the order of milliseconds, can be neglected
compared to the time between discovery retries, which is in
the order of seconds.

TABLE II
SUMMARY OF SIMULATION SCENARIO PARAMETERS

Scenario 1 2 3

Number of service providers 1 1,20,50 1...50
Maximum discovery time 10s 0...20s 20s
Packet loss (%) 0...90 20,40 10,20,30,40
Observed discovery operations 10,000 6,000 24,000

Packet loss was identified as the highest-impact fault on
service discovery. So, in these experiments we focused on
packet loss. Since we assume a mean packet loss service
discovery responsiveness will most probably be worse in
networks with more complex fault characteristics. Our analysis
hence provides an upper bound.

Since service instances are discovered on a single node,
in our network model it is sufficient to drop packets only
on links directly attached to it. In fact, packet dropping was
done independently in forwarding direction of every individual
interface connected to the virtual bridge. This setup causes
multi- or broadcasts to be potentially lost on every interface
they were transmitted to in order to prevent all-or-nothing
behavior where a broadcast is either received by all or by
no host at all.

B. Simulation scenarios

To judge the applicability of decentralized discovery mech-
anisms, three scenarios were chosen that reflect common
use cases of service discovery. The parameters of the three
scenarios are summarized in Table II.

1) Scenario 1: Single service discovery: The first goal is
to measure the responsiveness of single service discovery. The
service network consists of one client and one provider. The
client has lax requirements and is allowed to wait up to ten
seconds for a positive response. This is a common scenario
for service discovery and can be considered as the baseline.
Only one answer needs to be received and there is enough time
to wait for it. To see how results vary in unreliable networks
measurements have been taken with packet loss rates ranging
from zero to 90 percent.

2) Scenario 2: Timely service discovery: Most service
networks are populated with multiple instances of the same
service type. The client needs to discover as many instances as
possible and will then choose one that optimally fits its require-
ments. The faster discovery is successful, the better. In this
scenario full coverage is required. There is one service client,
n service providers (n = 1, 10, 50) and discovery is successful
if all n provided service instances have been discovered. The
goal is to measure how responsiveness increases with time.
The faster we reach a high value the better. Measurements are
carried out with a packet loss rate of 20 and 40 percent.

3) Scenario 3: Multiple service discovery: When dealing
with packet loss in the network, in general more instances of
the same service type should increase responsiveness of ser-
vice discovery when looking for a fixed number of instances.
In the case of fixed coverage – which means the ratio of

Fig. 1. Responsiveness of single service discovery with 10s deadline as a
function of a packet loss rate

discovered services needed for successful operation remains
constant – this is not necessarily the case. In this scenario we
investigate the difference in responsiveness when discovering
n out of n service instances (full coverage) with n growing
up to 50. Measurements are carried out with a packet loss rate
of 10, 20, 30 and 40 percent.

V. EXPERIMENTAL RESULTS

In this section the results for the three scenarios described
in Section IV-B are presented and discussed. The total number
of discovery requests sent in simulation was 60,000. The
number of accumulated discovery responses reached 599,046.
Requests were split equally over loss rates ranging from
0% to 90% in 10% steps and over the number of provided
service instances equal to 1, 2, 5, 10, 20 and 50. The number of
investigated discovery operations for each scenario are shown
in Table II. The raw data of all these measurements has been
uploaded to the AMBER Data Repository [26] and interested
researchers are invited to perform further investigations.

A. Scenario results: Single service discovery

Discovery of single service instances within ten seconds
proved to be reasonably responsive in networks with low
packet loss. As illustrated in Figure 1, even with 30% packet
loss, the responsiveness of single service discovery was well
above 0.9 which is acceptable in this scenario. The service
client in this scenario has lax requirements from which can
be concluded that any responsiveness higher than 0.9 should
suffice. With higher packet loss rates responsiveness decreases
rapidly, dropping to 0.63 at 50 percent packet loss. In real

Fig. 2. Responsiveness of service discovery with 20% packet loss

world networks with more complex fault behavior – for exam-
ple wireless networks – the results are probably worse, which
is not promising for other scenarios with stricter requirements.

However, it is valid to conclude that with up to 20 percent
packet loss and no additional worsening effects, single service
discovery is sufficiently responsive.

B. Scenario results: Timely service discovery

The analysis of the data for this scenario is illustrated in
Figures 2 and 3. With 20 percent packet loss the line for
discovering a single service is close to a responsiveness of one.
This follows the conclusions from single service discovery
at 10 seconds waiting time (Figure 1). In fact, discovering a
single service reaches a responsiveness of almost 0.9 already
after the first retry in this scenario. With the given techniques
and low packet loss, current Zeroconf service discovery mech-
anisms work sufficiently well when discovering single service
instances.

However, Figure 2 shows that responsiveness decreases
rapidly if more services need to be discovered. Both dis-
covering 10 and 50 service instances reaches a somewhat
acceptable (≈ 0.95 and ≈ 0.7) responsiveness at the end of
the timescale after four retries with 20 percent packet loss.
This corresponds to scenarios where there is enough time to
wait for discovery responses and, especially in the case of 50
instances, low responsiveness is acceptable. If short response
times are needed, we need a high responsiveness in shortest
time and it can be seen in Figure 2 that both curves require a
long discovery time to reach reasonable responsiveness.

The characteristic steps in the curves mark the request retry
events. Whenever a discovery request is sent, It can be ex-

Fig. 3. Responsiveness of service discovery with 40% packet loss

pected that a shorter time between retries should significantly
increase responsiveness (at a given time t). However, this
would also increase network load and might have other adverse
effects on the network especially when dealing with a high
number of service instances. Without a more realistic network
model and a sound cost function for packet transmission it
seems difficult to determine an optimal threshold.

With 40 percent packet loss, discovery of multiple services
almost completely stops working. Figure 3 illustrates this.
There is a chance of less than one third to find all services
instances in time when there are ten instances in the network.
Discovering 50 service instances is practically impossible.
In contrast, discovering single services remains partly usable
so doubling the packet loss rate did not have a comparable
dramatic effect on responsiveness as with multiple services.
This dramatic decrease in responsiveness when discovering
more service instances will be investigated in the next scenario.

C. Scenario results: Multiple service discovery

In this scenario we investigate responsiveness for discover-
ing a fixed percentage of service instances when the number
of service instances increases. Full coverage is required so
100% of service instances need to be discovered for successful
operation. All instances belong to the same service type –
a single discovery request should discover all instances if
no packets are lost. It could already be deducted from the
last scenario that service discovery responsiveness decreases
dramatically when discovering ten or more services in lossy
networks. Figure 4 shows an articulate explanation for this
behavior.

With low packet loss rates responsiveness decreases linearly

Fig. 4. Responsiveness of Zeroconf service discovery after four retries (within
20s)

with the number of nodes in the network. This is the reason
why with 20 percent packet loss we still have a pretty
high probability of almost 80 percent to discover 50 service
instances in time (see Figure 2).

If more packets get dropped this worsens rapidly to an
exponential decrease of responsiveness with the number of
nodes in the network. In practice, service discovery with
high coverage becomes unusable when dealing with a higher
number of services. Current Zeroconf discovery methods are
usually not operating in such scenarios.

We can conclude that with given discovery methods, we
reach a threshold in unreliable networks when we try to
discover an increasing number of services. The exponential
decline of responsiveness seen in the last scenario illustrates
this threshold.

Responsiveness can be improved if a low coverage is
acceptable. This can, for example, be the case if redundant
service instances are introduced to the network and, e.g.,
a fixed number of service instances needs to be discovered
(regardless of the total number of instances in the network).
However, following the conclusions from the multiple service
discovery scenario, this assumption is only valid in networks
with low packet loss. In less reliable networks redundant
service instances could in fact worsen responsiveness.

Applying the improvements proposed in [11] to multicast
DNS could also improve responsiveness in the described three
scenarios. However, further investigations are needed since not
all improvements are compliant with the existing standards.
Changes such as accepting non-authoritative discovery re-
sponses from any nodes in the service network might improve

discovery responsiveness but reduce the reliability of service
discovery as a whole.

VI. CONCLUSIONS

Service discovery is an elementary concept in service net-
works. It provides networks with the capability to publish,
enumerate and locate service instances. A working service
discovery is thus the precondition for a service network to
operate correctly and for the services to be available. If a client
cannot discover the presence of a service in the network, it can
never be available to the client.

In this paper, we examined dependability aspects of decen-
tralized service discovery concepts in unreliable networks. We
simulated a service network that was automatically configured
by Zeroconf technologies, which are frequently used in real
life applications.

Since discovery is a time-critical operation, we focused on
responsiveness which is the probability of successful operation
within deadlines. We evaluated responsiveness of domain
name system (DNS) based service discovery under influence
of packet loss and with up to 50 service instances.

The empirical results show that the responsiveness of the
used service discovery mechanisms decreases dramatically
with moderate packet loss of around 20%. It decreases further
the more service instances need to be discovered. At high
packet loss rates the decrease becomes exponential with the
number of nodes such that discovery becomes practically
impossible.

In summary, with self-configuring networks entering
dependability-critical domains, our experimental evaluation
has shown that distributed service discovery has to be used
with caution, especially in wireless scenarios where packet loss
cannot be neglected. Finally, with increasing demand for real-
time systems, the responsiveness optimization will become the
main issue.

REFERENCES

[1] A. Dittrich and J. Kowal, “Architektur für selbstkonfigurierende Dienste
auf Basis stark ressourcenbeschränkter eingebetteter Systeme,” Master
Thesis, Institut für Informatik, Humboldt-Universität zu Berlin, July
2008.

[2] M. Malek, “Responsive systems: The challenge for the nineties,” Mi-
croprocessing and Microprogramming, vol. 30, pp. 9–16, 1990.

[3] A. Williams, “Requirements for automatic configuration of IP hosts,”
Draft, September 2002, draft-ietf-zeroconf-reqts-12.

[4] E. Guttman, “Zeroconf host profile applicability statement,” Draft, July
2001, draft-ietf-zeroconf-host-prof-01.

[5] P. Jalote, Fault Tolerance in Distributed Systems. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1994.

[6] W. K. Edwards, “Discovery systems in ubiquitous computing,” IEEE
Pervasive Computing, vol. 5, no. 2, pp. 70–77, 2006.

[7] C.-S. Oh, Y.-B. Ko, and J.-H. Kim, “A hybrid service discovery for
improving robustness in mobile ad hoc networks,” in Proceedings of
the IEEE 2004 International Conference on Dependable Systems and
Networks (DSN 2004). IEEE Computer Society, June 2004, Short Paper.

[8] H. Bohnenkamp, P. van der Stok, H. Hermanns, and F. Vaandrager,
“Cost-optimization of the ipv4 zeroconf protocol,” Dependable Systems
and Networks, International Conference on, vol. 0, p. 531, 2003.

[9] B. Aboba, D. Thaler, and L. Esibov, “Link-local Multicast
Name Resolution (LLMNR),” RFC 4795 (Informational), Internet
Engineering Task Force, Jan. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4795.txt

[10] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet-
Draft, 2006. [Online]. Available: http://tools.ietf.org/html/draft-cheshire-
dnsext-multicastdns-06.txt

[11] C. Campo and C. Garcı́a-Rubio, “DNS-based service discovery in ad hoc
networks: Evaluation and improvements,” in PWC, 2006, pp. 111–122.

[12] C. Dabrowski, K. Mills, and S. Quirolgico, “Understanding failure
response in service discovery systems,” J. Syst. Softw., vol. 80, no. 6,
pp. 896–917, 2007.

[13] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol, Version 2,” RFC 2608 (Proposed Standard), Internet
Engineering Task Force, Jun. 1999, updated by RFC 3224. [Online].
Available: http://www.ietf.org/rfc/rfc2608.txt

[14] “Universal plug and play device architecture 1.1,” UPnP Forum, Tech.
Rep., 10 2008.

[15] E. Guttman, “Autoconfiguration for ip networking: Enabling local com-
munication,” IEEE Internet Computing, vol. 5, no. 3, pp. 81–86, 2001.

[16] A. Dittrich, J. Kowal, and M. Malek, “Designing survivable services
from independent components with basic functionality,” in International
Workshop on Dependable Network Computing and Mobile Systems
(DNCMS 08), Naples, Italy, October 2008, pp. 33–38.

[17] K. Pauls and R. S. Hall, “Eureka - a resource discovery service for
component deployment,” in Component Deployment, 2004, pp. 159–174.

[18] S. Cheshire and D. H. Steinberg, Zero Configuration Networking – The
Definitive Guide, 1st ed. OŔeilly Media, Inc., December 2005.

[19] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration
of IPv4 Link-Local Addresses,” RFC 3927 (Proposed Standard),
Internet Engineering Task Force, May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc3927.txt

[20] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware,” RFC 826 (Standard), Internet Engineering Task
Force, Nov. 1982, updated by RFCs 5227, 5494. [Online]. Available:
http://www.ietf.org/rfc/rfc826.txt

[21] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035 (Standard), Internet Engineering Task Force, Nov. 1987,
updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065,
2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,
4343. [Online]. Available: http://www.ietf.org/rfc/rfc1035.txt

[22] S. Cheshire and M. Krochmal, “DNS-Based Service
Discovery,” Internet-Draft, Aug. 2006. [Online]. Available:
http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd-04.txt

[23] (2009) The xen R© hypervisor. [Online]. Available: http://xen.org/
[24] Debian – the universal operating system. [Online]. Available:

http://www.debian.org/
[25] The avahi project. [Online]. Available: http://avahi.org/
[26] J. D. Marco Vieira, Naaliel Mendes and H. Madeira, “The AMBER data

repository,” University of Coimbra, Coimbra, Portugal, Tech. Rep., May
2008.

