
User-Perceived Instantaneous Service Availability Evaluation

Rafael Rezende, Andreas Dittrich and Miroslaw Malek
Advanced Learning and Research Institute (ALaRI)

Università della Svizzera italiana (USI)
Lugano, Switzerland

Email: {ribeiror,andreas.dittrich,malekm}@usi.ch

Abstract—Today’s businesses rely ever more on dependable
service provision deployed on information and communica-
tions technology (ICT) infrastructures. Service dependability
is highly influenced by the properties of individual infrastruc-
ture components. Combining these properties for consistent
dependability analysis is challenging as every service requester
might use a different set of components during service usage,
constituting the user-perceived view on a service.

This paper presents a methodology to evaluate user-
perceived instantaneous service availability. It uses three input
models: (1) The ICT infrastructure, with failure rates, repair
rates and deployment times of all components, (2) an abstract
description of complex hierarchical services, (3) a mapping
that contains concrete ICT components for the service pair
requester and provider, as well as existing replicas, and a
duration of usage.

The presented methodology sets up the basis for automatic
generation of availability models from those parts of the ICT
infrastructure needed during provision for the specified pair.
To calculate instantaneous availability, the age of the ICT
components, the order and time of their usage during service
provision are taken into account. The methodology supports
generation of different availability models, exemplarily provid-
ing reliability block diagrams and fault-trees. We demonstrate
the feasibility of the proposed approach by applying it to
parts of the network infrastructure of University of Lugano,
Switzerland.

Keywords-Distributed computing; Client-server systems;
Availability; Fault tolerance; Modeling

I. INTRODUCTION

In the last decade, service-oriented architecture (SOA)
has emerged as a formalism to improve system design by
focusing on modern business requirements, which everyday
rely more on successful service provision. SOA proposes
services as the basic building elements of a system. [1]
Services are mostly deployed on information and commu-
nications technology (ICT) infrastructures. Every service is
highly dependent on the properties of the network where
it is deployed as, for instance, dependability. Therefore, to
estimate the probability of a successful service delivery,
it is necessary to extract and analyze the dependability
properties of the relevant ICT components, in order to
reflect the properties of the infrastructure layer to the service
under evaluation. The complexity of the services along with
this dependency imposes challenges to the evaluation of

dependability, especially facing the growth of functional and
non-functional requirements.

Services can be requested and provided from different
locations within a network. Depending on these locations,
only a fraction of the network is needed during service
provision, constituting the user-perceived view on a service.
For consistent dependability analysis, only that fraction
should be taken into account. Redundant paths and re-
dundant service providers are also common approaches to
increase the probability of a successful service delivery.
SOA also proposes hierarchical composition of services that
can be accessed with a single interface. The criteria for
service divisibility is a business decision, so that the smallest
service elements – called atomic services – have a unique
functionality and can be reused within different composite
services. For instance, an email composite service can be
divided into atomic services authenticate, send emails and
receive emails, which can be reused by different composite
services.

One of the most common criteria when evaluating the
quality of service providers is their interval availability, the
uptime of a system over a reference period. As motivated
above, for every service and every pair of requester and
provider, a different set of components is required and
accessed at specific instants. As availability decreases over
time, the last maintenance of components will also impact
the overall service availability. Moreover, the longer the
service is expected to run, more relevant is the possibility
of eventual failure during its execution.

In addressing these issues, we propose the evaluation of
user-perceived instantaneous service availability, the prob-
ability of a service to be available at a specific point
in time. It takes an ICT infrastructure model, an abstract
service description and a mapping between them as inputs.
The infrastructure model includes all ICT components, their
failure and repair rates and deployment times. The abstract
service model describes hierarchical services as composition
of atomic services. The mapping contains concrete ICT
components for the service requester and provider, including
possibly redundant components and their expected duration
of usage. Using these models, the methodology automat-
ically generates an availability model from those parts of
the ICT infrastructure needed during service provision for



D1:C3750

D2:C3750

E1:HP2650
E4:HP2650

E2:HP2650 E3:HP2650

auth:Server backup:Server

email:Server db:Server

T4:Comp

T3:Comp

T2:Comp
T1:Comp

T5:Comp

T6:Comp

T7:Comp

T8:Comp T10:Comp

T11:Comp

T12:Comp

T13:Comp

T14:Comp

T15:Comp

P2:Printer

P3:Printer

dns1:Serverdns2:Server

T9:Comp

P1:Printer

C1:C6500 C2:C6500

D3:C2960 D4:C2960

Figure 1. Network infrastructure based on university campus network.

the specified user-perceived view. The methodology sup-
ports the generation of different availability models, as we
demonstrate by providing either reliability block diagrams
(RBDs) or fault-trees (FTs). We demonstrate the feasibility
of the methodology by applying it to parts of the network
infrastructure of University of Lugano, Switzerland. This
infrastructure is depicted in Figure 1. It consists of six
interconnected routers and switches in its core with servers
directly connected to it, and tree-like peripheral networks
composed of clients and printers. A more detailed descrip-
tion can be found in Section VI.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of availability metrics. Related
work is introduced in Section III. We state the scientific
problem in Section IV. The methodology to evaluate user-
perceived instantaneous service availability is presented in
Section V and demonstrated in Section VI. Section VII
concludes this work.

II. BACKGROUND

Empirical analyses have shown that components are more
prone to failure at the beginning and at the end of their life-
cycles. In this sense, the failure rate (λ) over time results in
the so-called bathtub failure curve. Vendors usually try to
mitigate the effects of infant mortality by intensively testing
the hardware before dispatching it so that customers receive
the product at the stage of lowest failure probability, in which
the failure rate is nearly constant until the wear-out stage,
that delimits the end of product’s life-cycle. This stage of
constant failure rate corresponds to the major part of the

life time of an electronic component. The failure probability
density function (PDF) f(t) gives the relative frequency of
failures at any given time t. For a constant failure rate, it can
be approximated as an exponential function (see Equation 1).
The cumulative distribution function (CDF) F (t) represents
the probability of a failure occurring before time t, and
is given by the Equation 2. The complement of the CDF
is therefore the probability of a component to perform its
functions for a desired period of time without failure, better
known as the reliability R(t) of a component (Equation 3).

f(t) = λ · e−λ·t (1)

F (t) =

∫ t

0

f(t) · dt = 1− e−λ·t (2)

R(t) = 1− F (t) =
∫ ∞
t

f(t) · dt = e−λ·t (3)

For repairable systems, the probability of a component
to be alive at time t is given by the probability that no
failure has occurred before t – reliability R(t) itself – plus
the probability that, after the last failure, the component was
repaired at time x, with 0 < x < t, and has worked properly
since then – R(t− x). This probability is called availability
A(t) or more specifically, instantaneous availability. It can
be expressed in terms of R(t) and the probability of repair at
instant x, given by m(x) ·dx (see Equation 4). For constant
failure rate λ and repair rate µ, the availability A(t) can be
expressed as in Equation 5. As can be noticed, for a repair
rate tending to zero, A(t) tends to reliability R(t).

A(t) = R(t) +

∫ t

0

R(t− x) ·m(x) · dx (4)

A(t) =
µ

λ+ µ
+

λ

λ+ µ
· e−(λ+µ)·t (5)

The interval availability AI(t) is the probability that a
system is operational during a period of time (Equation 6). In
this paper, the function A(t1, t2) is used interchangeably for
interval availability, where t1 and t2 denote the start and end
times of the evaluated interval. The steady-state availability
is the probability that a system is operational when t→∞.
As seen in Equation 7, it depends only on the failure and
repair rates of components.

AI(t) = A(0, t) =
1

t− 0
·
∫ t

0

A(τ)dτ (6)

A =
µ

λ+ µ
(7)

Hardware vendors usually provide the mean-time-to-
failure (MTTF) of their products. For repairable systems, the
mean-time-to-repair (MTTR) depends on the implemented
maintenance processes. Constant failure and repair rates can
be obtained by calculating the multiplicative inverse of the
MTTF or MTTR, respectively.



III. RELATED WORK

SOA [1] proposes services as basic building elements
modeled apart of the infrastructure layer. The service avail-
ability forum (SAF) [2] points to a different direction in its
availability management framework (AMF) by stating that
AMF components – pieces of hardware or software – are
intrinsically service providers. This paper adopts the service
definition as proposed by Milanovic et al. in [3]:

Definition 1: Service is an abstraction of the infrastruc-
ture, application or business level functionality. It consists
of a contract, interface, and implementation. [...] The service
interface provides means for clients to connect to the service,
possibly but not mandatory via network.

Their methodology proposes the automatic evaluation of
steady-state service availability based on network monitoring
data [3], [4]. Since they rely on a configuration management
database system to gather topology information at run-time,
prior evaluation during design time is not contemplated. In
their methodology, they propose the usage of a depth-first
search (DFS) algorithm [5] to discover all possible paths
between service requester and provider, generate a boolean
equation from each path and then merge and simplify them
into a single equation using an external boolean solver
application. The resulting equation is then converted to an
RBD model which is, again, evaluated with an external
application.

The authors of [6] also describe a model to evaluate user-
perceived service availability. However, their approach has
a different service model in mind. Services are perceived as
available by a user, if their specific resources are available
upon request by that user. The model presented in the
paper at hand does not take into account the quality during
service usage but focuses on the availability of the network
infrastructure used during service communication between
arbitrary pairs requester and provider. The user-perceived
scope is thus defined by the network subgraph of such a
pair and not by the quality requirements of a specific user.

A comprehensive collection of foundations, models, meth-
ods and tools that can be used for service availability
assessment can be found in [7]. More recently, the CHESS
project [8] was funded by a joint of public-private partners
of the European Union to support the development of
an automated tool for dependability analysis. This project
focuses on embedded systems and provides an Eclipse-based
tool with its own modeling language.

Few works have been proposed in which dependability
properties are fixed by means of a Unified Modeling Lan-
guage (UML) profile. Basically, UML profiles are mecha-
nisms to customize the existing UML models by allowing
the addition of permanent attributes according to the nature
of the target model. Profiles can be composed of stereotypes
and its stereotypes attributes. Stereotypes are applied to
existing UML elements, which automatically inherit the

respective stereotype attributes. Following this direction, the
dependability analysis modeling (DAM) project [9] proposes
a UML profile to model dependability, and extends the ex-
isting MARTE profile [10] to better represent non-functional
properties. The project provides an extensive set of models
with detailed attributes, but it is focused on modeling only
and does not provide a transformation to reliability models
for further evaluation.

Finally, [11] proposes a methodology for evaluation of
user-perceived service properties, in which the ICT in-
frastructure and services are modeled independently using
UML object and activity diagrams, respectively. Then, a
mechanism is used to project the properties of ICT compo-
nents to services through an XML mapping that correlates
their respective models. The work in [12] complements this
methodology with a UML availability profile that supports
steady-state availability analysis. Since the paper at hand ex-
tends [11] and [12] with a time dimension for instantaneous
availability evaluation, their details are better described in
Section V.

IV. PROBLEM STATEMENT

A consistent evaluation of user-perceived instantaneous
service availability presents diverse challenges. A methodol-
ogy is needed to merge the four dimensions – infrastructure,
service, user and time – into a consistent model-driven
availability evaluation. The methodology should include:

1) A model to describe the ICT infrastructure with avail-
ability properties (failure and repair rate, deployment
time or time after last maintenance action).

2) A model to describe services hierarchically as a com-
position of atomic services.

3) A mapping between service elements and ICT in-
frastructure elements based on the user perspective,
defining concrete service requesters and providers and
their redundant instances if available.

4) A mechanism to evaluate the user-perceived service
availability at a given point in time and for a given
user-perceived view on a service according to the
availability properties of the provided infrastructure.

Items 1, 2 and 3 should facilitate updates, as the in-
frastructure, its properties, the service description and user
perspective will eventually change for different analyses.
Item 4 should be automated and the complete methodology
should be preferably implemented using mature standards
and open-source tools. Failure rates of ICT components
are assumed to be given by hardware vendors or estimated
using monitoring data, implying also software failures of
service providers. Repair rates depend on the implemented
maintenance strategy. Obtaining these values is out of the
scope of this work. Modeling and predicting other external
factors like network load is also not considered.



V. METHODOLOGY

User-perceived service availability is highly dependent on
the underlying ICT infrastructure. Since availability is an
intrinsic property of the ICT layer, a mechanism is needed
to reflect this property on a service availability model.
Following Definition 1, we assume a service to be available
if all network components needed for interface connection
and communication during service provision are available.
The set of ICT components deployed for service provision
differs for each pair of service requester and provider within
the network, and with it, the respective availability varies as
well. We simplify the fault model by taking only constant
failure and repair rates of ICT components into account. This
means we assume that all faults that happen after a defined
deployment time are combined in the failure and repair rates
of individual ICT components.

In order to evaluate user-perceived instantaneous service
availability, the time dimension must be added to the prob-
lem. As said, [12] is dealing only with steady-state availabil-
ity, where time t→∞. In such scenarios, every component
is known to have reached a constant and stable availability,
so that composite service availability can be evaluated as if
composing atomic services were invoked at the same time
t → ∞. While steady-state availability has its applications,
it cannot capture the behavior of services over time as it
cannot consider different execution times of atomic services
and the age of their providing components. For example,
if after failure a hardware component is replaced with an
identical, but new unit, steady-state analysis would result
in the same service availability as before the replacement.
When evaluating the service availability at time tx<∞,
it is important to know the estimated execution time of
each atomic service, since they may be invoked at different
instants and the availability of ICT components varies over
time. Moreover, every component may have been deployed
at different points in time. Some components may have
already reached a steady-state condition, while others are
in transient state.

A. Input models

ICT infrastructures are able to support a variety of ser-
vices, while a single service description can be similarly
applied to a diversity of networks. For this reason, the
presented methodology supports independent modeling of
infrastructure and services, relying on a third model to
provide a relation between them. This approach implies also
that changes on the network topology or service description
should be reflected only in their respective models.

1) Infrastructure model: In practice, a network topology
can be represented as a bidirectional graph, in which net-
work devices and their links are respectively characterized
by nodes and edges. Since networks are composed of
heterogeneous nodes, in opposition to graphs, a separate
model would better represent the individual characteristics

<<Stereotype>>
Component

failureRate:Real
repairRate:Real
deploymentTime:Integer

<<Stereotype>>
Device

<<Stereotype>>
Link

<<metaclass>>
Class

<<metaclass>>
Association

Figure 2. Availability profile used to represent availability properties.

of network components. This approach has been proposed
in [11]: ICT components are modeled using UML class
diagrams, while the network topology is represented in a
UML object diagram. A simple UML profile is applied to
the elements of the UML class diagram to guarantee that
ICT components contain a uniform set of dependability
properties compliant with the evaluation. Following this
approach, we also provide an availability profile, which is
depicted in Figure 2. However, since this work is focused
on instantaneous availability, as opposed to steady-state, the
profile includes different stereotype attributes: (1) failure
rate, (2) repair rate and (3) component deployment time,
at which a component is expected to have its maximum
availability. Although any date and time format could be
applied, epoch time has been chosen for deployment time
to simplify subsequent steps. ICT components are divided
into devices and links and are represented in the UML class
diagram in Figure 2 as classes and associations, respectively.

2) Service model: Services are modeled using UML
Activity Diagrams, in which every action element represents
an atomic service, as proposed in [11]. In this methodology,
the availability is measured by the probability to traverse
the activity diagram from start to end nodes. To accomplish
that, every composing atomic service must be successfully
executed, that is, there must be at least one path between
a service requester and one of its providers in which all
network components are available. As an example, the
composite service model in Figure 3 shows that atomic
services A and B are executed in parallel, C is executed
right after both of them completed, D follows after C. The
represented composite service is successful if and only if all
its composing atomic services are successful.

3) Mapping model: To obtain a set of potentially required
ICT components for each atomic service, the service model
is projected to the ICT infrastructure by a separate mapping,



A

B

C D

Figure 3. Example of composite service model as UML Activity Diagram.

<atomicservice id="C" requester="req1" timeout="10">

<provider="prov1" duration="3" priority="0">

<provider="prov2" duration="4" priority="1">

<provider="prov3" duration="8" priority="1">

</atomicservice>

Figure 4. Mapping example of single atomic service in XML code.

represented in an XML file. The mapping denotes which
node is requesting a specific atomic service and which
nodes are providing that service. Contrarily to the service
mapping pair proposed in [11], this methodology introduces
a mapping model that allows multiple service providers per
atomic service, which enables the modeling of redundant
parts (i.e. multiple DNS servers) located in different areas of
the network. This feature requires an additional annotation to
describe the priority of access, as the redundant parts can be
accessed in parallel or in series after an eventual failure. For
the latter case, further annotations are needed to define serial
access times of redundant components. Additionally, this
methodology supports redundancy modeling using indepen-
dent components with possibly different properties, instead
of identical replicas as in [11]. Service and infrastructure
descriptions are time-independent and, alone, are not able
to provide an estimated execution time for atomic services.
This becomes instead a new parameter of the mapping.
Having such information, it is possible to estimate for which
interval each atomic service availability should be evaluated.
The service model plays an important role by describing
which atomic services are executed in parallel or in series.

This methodology uses a mapping model as exemplified
in Figure 4. Multiple providers within an atomic service
description are always considered to be redundant, that is,
at least one of the listed instances must be available for the
requester to achieve a successful service provision. Every
instance may be able to provide the atomic service with a
different estimated duration in seconds, and the priority (0
= highest) plays a role for the definition of start and end
execution times for each instance access.

In the example of Figure 4, three providers prov1, prov2,
prov3 are able to deliver a specified atomic service C to the
requester req1. Supposing this atomic service is invoked at
time t = 0s, the example models the following behavior:
component req1 requests a service from component prov1,
which has the highest priority. If service provision fails, req1
requests the same service from components prov2 and prov3
simultaneously – both have priority 1 – after the timeout.

Therefore, next requests are invoked at time t = 10s and
take 4 and 8 seconds, respectively. The atomic service is
considered finished only after every provider has finished.
The duration of atomic service C is then 18 seconds, that is
the latest estimated end time minus the earliest estimated
start time of its redundant providers. This way, the next
atomic service will be invoked at time t = 18s.

Although there is a well-defined serial and parallel order
of execution in the system behavior, availability analysis
will always consider them as parallel since they represent
redundancy. Details are described in Section V-C, where the
example of Figure 4 is evaluated.

4) Input model considerations: As input models, this
work adopts the Unified Modeling Language (UML) for
infrastructure and service descriptions as it is standardized
and widely used, especially for design purposes. For the
mapping model, XML is chosen due to its versatility. The
decisions for UML and XML guarantee that the models
remain human-readable and visualization was a relevant
factor driving those decisions. However, the main contri-
bution of the proposed methodology lies in the evaluation
of user-perceived instantaneous service availability, given
that the ICT infrastructure is accordingly described with
availability properties. Therefore, those inputs can also be
provided using different formalisms, keeping intact the main
purpose of the methodology but improving, for instance,
the scalability of its application. One possible improvement
has already been proposed in [13], where the topology
information is gathered directly from the routing layer to be
used in the responsiveness evaluation of service discovery
in wireless mesh networks. The routing layer is also able to
provide the quality of links, as it keeps statistical data about
successful packet transmission among nodes.

B. Path discovery algorithm

In order to identify the ICT components potentially re-
quired for service provision, all possible paths between the
service requester and provider must be traced. Multiple paths
significantly increase the availability of an atomic service, as
they provide redundancy. The path discovery algorithm used
in this methodology was first described in [11] and is based
on the DFS algorithm [5], with a path tracking mechanism to
avoid live-locks in cycles. It takes a pair of service requester
and provider from the mapping model, identifies both in
the graph representation of the network – obtained from the
UML object diagram in Section V-A1 – and traces the paths
between them to be subsequently merged into a subgraph.
This process is repeated for every provider described in the
mapping model.

Consider the graph in Figure 5 and the atomic service
mapping of Figure 4. The path discovery is executed three
times, once per provider. Taking provider prov1 as exam-
ple, the algorithm is able to discover two paths starting
from component req1 (Figure 6(a)). In order to merge all



lr1x

lp2x

lxy

lxz lyz

lp1y

lp3z

req1

prov2

x

y

z

prov1

prov3

Figure 5. Simple network topology to demonstrate path discovery.

(a)
req1 lr1x x lxy y lp1y prov1

req1 lr1x x lxz z lzy y lp1y prov1

(b) req1 lr1x x y lp1y prov1
lxy

lxz z lzy

Figure 6. Paths between req1 and prov1 (a) and merged subgraph (b).

discovered paths, identical vertices and edges are merged.
The resulting subgraph is shown in Figure 6(b), and can be
directly transformed into an availability model, as described
in the Section V-C.

The complexity of a DFS algorithm is prohibitive in
networks with a high degree of connectivity, such as wireless
mesh networks. For that reason, the authors of [13] propose
a probabilistic path discovery to reduce the complexity of
regular DFS. Although it does not guarantee every possi-
ble path, the probabilistic algorithm ensures that the most
relevant ones will be found. If a subsequent analysis can
use such probabilistic information, this is a valid solution to
achieve better scalability. The evaluation of the methodology
presented in the paper at hand is able to use the output of
probabilistic path discovery. But since complexity poses no
problem due to the low connectivity of the network under
analysis, it was chosen to do full DFS instead which will
result in a higher accuracy of the results. This assumption
is valid for most cable-based networks.

C. Evaluation of user-perceived service availability

In this step, the resulting subgraphs from Section V-B
are transformed into individual availability models and
connected to a composite model that calculates the user-
perceived instantaneous service availability. A key contribu-
tion of this methodology is that the availability of individual
components is shifted in time according to their deployment
time and to the estimated atomic service duration. This
approach provides a realistic and consistent evaluation for
transient scenarios, and can be divided into two steps: The
Model generation step generates the service availability
model, which is composed of the availability of individual
components arranged according to their roles in the service
provision. The Access time definition step complements the
service availability model by identifying the exact instant at
which each component is invoked within its life-cycle.

1) Model generation: Existing methodologies for steady-
state availability analysis mostly use RBDs to represent their
output models. If the focus of modeling is on failure instead
of success conditions, FTs are used. Both models provide
comparable analysis for different points of view and are
supported by the proposed methodology.

The user-perceived service availability model, represented
in the FT in Figure 7, is composed of three main stages:

1) According to the service model in Figure 3, the
condition for the composite service S to fail is that
at least one of the atomic services fails. Therefore,
the first stage of this model can be represented in the
rightmost part of the tree by a single OR logic gate,
where the number of input ports corresponds to the
number of atomic services.

2) In Stage 2, every atomic service is represented by an
AND logic gate with every provider connected to an
input port. This logic gate represents a condition in
which all providers must fail to result in an atomic
service failure. This information is provided by the
mapping model in Figure 4, which contains three
providers prov1, prov2 and prov3.

3) Stage 3 in Figure 7 does not have a fixed pattern. Its
logical circuits depend exclusively on the subgraphs
from Section V-B. Components essential for service
provision of a specific provider are connected to OR
logic gates, while redundant components are con-
nected to AND logic gates. The third stage shows the
logic circuits of the resulting subgraph in Figure 6(b),
corresponding to communication between requester
req1 and provider prov1 in Figure 4.

The same problem can be modeled using an RBD, de-
picted in Figure 8. The layers 1, 2 and 3 correspond to
the equivalent stages in Figure 7: Composite service S,
atomic service C and component req1 using component
prov1 when requesting C. According to the RBD formalism,
logical AND gates represent parallel blocks while logical
OR gates represent serial blocks. The models in Figures 7
and 8, in addition to failure and repair rates of individual
ICT components, are sufficient to evaluate the user-perceived
steady-state service availability. In the next section, the
access time definition is explained that allows these models
to evaluate instantaneous availability of composite services.

2) Access time definition: In a non-steady-state scenario,
we want to evaluate how availability decreases over time.
The deployment time defines the instant at which individual
components were fully available. Furthermore, using the
additional information proposed in the mapping model –
duration and priority – it is possible to calculate when
every single atomic service provision is expected to start and
finish. The assumption that every service provision starts at
the same time is only valid for steady-state evaluation, where
components have reached a stable availability – a proposition
hardly realistic in dynamic and heterogeneous networks.



C

B

A

S F

req1(ts,te)

req1
prov1

123

lr1x(ts,te)

x(ts,te)

lxy(ts,te)

lxz(ts,te)

z(ts,te)

lzy(ts,te)

y(ts,te)

lp1y(ts,te)

prov1(ts,te)

D

Figure 7. Partial fault-tree (FT) of the provided example.

atomic service C

2

composite service
1

req1-prov1 of atomic service C

3

A B C D

req1-prov2

req1-prov1

req1-prov3

Areq1

(ts,te)
Alr1x

(ts,te)
Ax

(ts,te)
Alxy

(ts,te)

Alxz

(ts,te)
Az

(ts,te)
Alzy

(ts,te)
Ay

(ts,te)
Alp1y

(ts,te)
Aprov1

(ts,te)

Figure 8. Partial reliability block diagram (RBD) of the provided example.

As seen in Section V-C1, the user-perceived service
availability depends on the interval availability of many
components, according to their roles in their respective
atomic services. Another option would be to use the in-
stantaneous availability of those components at a specific
instant within this interval. Picking the correct instant is
not trivial, however. Using the start of the interval would
lead to an overly optimistic estimation while using the
end time might be too pessimistic, especially for longer
running atomic services. Picking any specific instant within
the interval would need a sophisticated atomic service model
with access durations for every component and dependencies
among them. It is unclear what such a model would look
like, knowing that components will change for every user-
perspective, and how it could be reasonably validated to
justify its usage. This is why this methodology proposes
to use interval availability, the average availability over the
whole duration of an atomic service. The exact range of
the interval availability evaluation, however, is estimated
according to the instant each component is invoked, taking
its deployment time as reference. Initial references can
be defined as follows: t0 of an individual component is
independently defined as its own deployment time, ta0 of a

composite service is defined as t0 of the newest component.
Furthermore, every atomic service is invoked at different
instants, with ta0 as reference. Their initial times are set
according to the service and mapping models, which denote
the serial/parallel configuration of each atomic service, and
provide their estimated duration. As mentioned in Section
V-A3, the estimated duration of each atomic service is given
by the latest estimated end time minus the earliest estimated
start time of its redundant providers.

As an example, consider the FT model in Figure 7. The
relevant network components, required for the provision of
atomic service C from provider prov1 to requester req1,
were deployed at different instants. In this example, com-
ponents prov1 and lp1y are assumed the youngest and their
deployment time is therefore taken as reference time ta0.
The composite service S will be invoked at t = ta0 +3600,
that is, one hour after the youngest component was deployed.
The atomic service C, mapped in Figure 4, has an estimated
duration of 18 seconds, as already described in Section
V-A3. Using similar analysis, the estimated duration of
atomic services A and B are set to 10 and 20. This way,
it is possible to identify the time intervals of each atomic
service relative to the reference ta0:
tinvocation start,A = ta0 + 3600 seconds
tinvocation end,A = ta0 + 3600 + 10 seconds
tinvocation start,B = tinvocation start,A

tinvocation end,B = ta0 + 3600 + 20 seconds
tinvocation start,C = tinvocation end,B

tinvocation end,C = ta0 + 3600 + 38 seconds

The invocation start time of C is equal to the latest
invocation end time of A and B, as it will be invoked
only after both A and B have finished. The same applies
to each service provision within atomic services. Absolute
start and end times of the availability intervals of individual
components i necessary for service provision p are given by:
ts,i = tinvocation start,p − tdeployment,i
te,i = tinvocation end,p − tdeployment,i

Let the deployment time of component x be ten days
before ta0. This way ts,x and te,x in the service provision
req1-prov1 within atomic service C are obtained as follows:
ts,x = ta0 + 3600 + 20− (ta0 − 864000) = 867620
te,x = ta0 + 3600 + 38− (ta0 − 864000) = 867638

The interval unavailability Ux(ts, te) = 1−Ax(ts,x, te,x)
for component x in the example of Figure 7 should be calcu-
lated using Equation 6. For constant failure and repair rates,
Ax(τ) is given by Equation 5. A different instantaneous
availability equation could be derived for non-constant rates
and used without any impact on the proposed methodology.
Still, a constant failure rate is a reasonable approximation
after the wear-in period of components, in which faults
become arbitrary events along most of their lifetime.



Resolve mail
server address

Dispatch email
via SMTP

Check
authentication

Figure 9. Send mail service represented in UML activity diagram.

VI. CASE STUDY

This section demonstrates the proposed methodology ap-
plied to an illustrative Send email service that requires a
mail exchanger (MX), a domain name system (DNS) server
and an authentication server. A client first uses the DNS
to resolve the MX address, then connects to the MX using
that address. It will then send an email message over that
MX by means of the common simple mail transfer protocol
(SMTP). During SMTP communication, the MX will check
authentication credentials provided by the client using an ex-
ternal authentication server. Three atomic services compose
the Send e-mail service, as seen in Figure 9.

Send email is deployed on a network based on the
real network infrastructure of the University of Lugano,
Switzerland. The network (see Figure 1) consists of six
interconnected routers and switches in its core, and tree-
like peripheral networks composed of clients and printers.
Servers are directly connected to the bottommost switches.
Every component has a unique ID and a specified type
in the format id : type. For better visualization, links
lack labels. They are, however, referenced throughout this
section as the concatenated IDs of the devices they connect.
Links in this network are categorized either as wired or
wireless, respectively represented by full or dashed lines.
Availability properties are set according to their types (Table
I). Deployment times are provided individually for each
component (Table II) and are represented in epoch time.
For each link, this corresponds to deployment time of the
youngest component connected to its edges. Reasonable
values that could reflect a real world example were chosen
for all components. In an actual network infrastructure,
both tables could be updated at run-time using monitoring
information and a configuration management database.

The steady-state availability of Send email has also been
evaluated in [12]. However, the network in Figure 1 pur-
posely presents redundant DNS servers in different locations
to emphasize a parallel contribution of the current paper, the
possibility to assign multiple providers for a single atomic
service. In [11], [12], redundant instances are always at the
same location and have identical failure and repair rates.

Two distinct scenarios will now be evaluated to demon-
strate the variance of instantaneous availability from differ-
ent user perspectives (Section VI-A) and when changing the
age or number of components (Section VI-B). The resulting
RBDs and FTs are too complex to be reasonably presented
in a paper and are left out, their results shown instead.

Table I
SPECIFICATION OF ICT COMPONENT TYPE PROPERTIES.

Type Failures/hour λ Repairs/hour µ
C2960 0.00000545 0.5
C6500 0.00001631 0.5
C3750 0.0000053 0.5
HP2650 0.00000503 0.5
Server 0.00001667 0.25
Comp 0.00033333 0.04167
Printer 0.00138889 2.0
Wired link 0.00000769 0.25
Wireless link 0.08333333 33.33

Table II
DEPLOYMENT TIMES OF INDIVIDUAL ICT COMPONENTS.

ID Deployment time (s) ID Deployment time (s)
t1 1366043100 e3 1366016400
t2 1366024200 e4 1367073300
t3 1368788400 d1 1366038000
t4 1368896400 d2 1346511000
t5 1366013700 d3 1366027200
t6 1366459200 d4 1346511000
t7 1366545600 c1 1346511000
t8 1367778000 c2 1346511000
t9 1369040400 p1 1366027200

t10 1366016400 p2 1366099200
t11 1366026600 p3 1368361800
t12 1366026600 backup 1368446400
t13 1367073300 db 1365850800
t14 1367073900 dns2 1366027200
t15 1367247600 auth 1366108200
e1 1366038000 email 1366050000
e2 1366013700 dns1 1355572800

Table III
MAPPING MODEL OF CLIENT t1 FOR Send email.

Atomic Service Requester Timeout Provider Prio Durat.

Resolve address t1 10s dns1 0 2 sec
dns2 1 2 sec

Dispatch email t1 10s email 0 5 sec
Check auth. email 2s auth 0 2 sec

A. Scenario – Send email from different clients

In this scenario, three different clients t1, t2 and printer p2
are requesting Send email. Component t1 is connected to e1
via a wired link (see Figure 1). The mapping model of this
scenario is shown in Table III. As opposed to t1, t2 is con-
nected to e1 via a wireless link. The rest of the infrastructure
remains unchanged, so the only difference from client t1 is a
less reliable link. The third client, printer p2, connects to the
network from a completely different position. The change
of user perspective for t2 and p2 is achieved with only
minor modifications to the mapping model, changing the
requester component of the atomic services Resolve address
and Dispatch email in Table III. The methodology then
automatically generates different availability models.



0.988

0.990

0.992

0.994

0.996

0.998

1.000

Time t

A(
t)

ta0 +1 week +2 weeks

t1

t2

p2

Figure 10. Send email service availability for different clients.

Table IV
AVAILABILITY OF Send email FOR DIFFERENT USER PERSPECTIVES.

Requester A(ta0) A A(ta0)−A

t1 0.9955 0.9916 0.0039 , 5.616 min/day
t2 0.9922 0.9891 0.0031 , 4.464 min/day
p2 0.9990 0.9989 0.0001 , 0.175 min/day

The reference time t0 of this evaluation corresponds to
the deployment time of the newest component potentially
required during service provision, component auth at epoch
time 1366108200 for all three clients. Evaluation of instan-
taneous availability A(t) is then performed over time until
it reaches a steady-state condition. Although this network
contains younger components, these were not identified by
the path discovery as potentially required during service
provision and have no impact on this analysis. The resulting
curves for the instantaneous availability of Send email when
invoked at time t are presented in Figure 10. Send email
is not fully available at t0 because not all components
were deployed at that exact time. Over time, the availability
decreases until also the most recently deployed compo-
nents, in this case auth and d3 auth, reach their individual
steady-state availability. Figure 10 shows a comparison of
the instantaneous availability of Send email when invoked
by clients t1 (dotted line), t2 (full line) and p2 (dashed
line). Some corner values are shown in Table IV with the
instantaneous availability A(ta0) at the reference time, the
steady-state availability A and difference of the two.

The steady-state availability for t1 is 0.9916 and that of
t2 is 0.9891. This translates to 3 days of downtime per year
for Send email when requested from t1 versus almost 4 days
when requested from t2. In both scenarios, the links between
clients t1 and t2 and the device e1 have a time redundancy
when the DNS service is requested. If the first request to
dns1 fails, the links will be tried again when requesting dns2.
So with respect to t1 e1 and t2 e1, the DNS service will
be successful when they are available either during the first
or the second request. This can be modeled as a system of
parallel availability blocks. During a subsequent request to
the email server, the links are again accessed, which can be
modeled as a block in series to the previous parallel system.

Page 1

0.982
0.984
0.986
0.988
0.990
0.992
0.994
0.996
0.998
1.000

Time t

A(
t)

ta0 +1 week +2 weeks

t1

Figure 11. Send email service availability for t1 when changing equipment.

Table V
AVAILABILITY OF Send email FOR t1 WHEN CHANGING COMPONENTS.

Requester A(ta0) A A(ta0)−A

only dns1 0.991091 0.983619 0.007472 , 10.76 min/day
dns1, dns2 0.991609 0.991605 0.000004 , 0.3 sec/day
new lab 0.999674 0.991612 0.008063 , 11.61 min/day

The evaluation of t1 e1 and t2 e1 according to their
access order in this system of two parallel blocks in series
with a single block, results in the steady-state availability
of 0.99997 and 0.9975, equivalent to the one for wired
and wireless links, respectively. The ratio of these values
resembles the ratio of the composite service steady-state
availabilities for t1 and t2, since the only difference between
them is the link from the clients to e1. A(t) of p2 is much
higher than the one of t1 and t2. It is also notably more
stable: While the difference between A(ta0) and A is minor
for the printer, it sums up to a few minutes per day for the
two client computers (see Table IV). The scenario shows that
the methodology is able to capture different availabilities of
the same service, depending on which client is using it and
also, that availabilities vary diversely over time.

B. Scenario – Adding and replacing equipment

The second scenario evaluates how A(t) changes when a
set of network components is added or replaced. Evaluation
is done from the perspective of t1 with reference time ta0.
This time, dns2 is absent during the first week. In the
mapping model, this fact is reflected by having no redundant
provider for the first atomic service. The next event is a
renewal of equipment in the lab room where components
t1, t2, t3, t4 and e1 were located (see Figure 1).

In Figure 11, the availability with a single DNS server
reaches a lower steady-state availability of 0.984 during the
first week, against 0.9916 with redundant DNS providers.
The addition of dns2 after one week alone does not cause
significant overshoot in instantaneous availability, as all but
one component (link dns2 d3) necessary to reach dns2 are
also required to access components dns1 and email, and
have already reached a steady-state condition. A(t) for Send
email minimally decreases over a few days to steady-state
availability before the lab room equipment is exchanged.



Following the replacement, the A(t) reaches 0.9997, as
new components are known to be fully available. The
individual component availability then decreases until they
again reach a steady-state condition, bringing the overall
service availability to the same level as before. Results are
summed up in Table V, steady-state values for A represent
the lowest values within the evaluated period.

When exactly the availability of a service will reach
steady-state depends on the individual characteristics of the
deployed components. Usually, the instantaneous availability
will tend to steady-state availability after a duration in the
order of weeks without changes in the network. In a regular
network with a reasonable amount of components and dy-
namism, it is very rare to have weeks without any changes to
the ICT infrastructure. This means that at any time, there will
be at least some user-perspectives in a transient state, which
justifies the decision to evaluate instantaneous availability.

VII. CONCLUSIONS AND OUTLOOK

Service availability is highly dependent on the prop-
erties of the underlying ICT infrastructure, which may
vary considerably within a network. Thus, different users
will also have divergent perceptions of service availabil-
ity according to their location. The main contribution of
this paper is a methodology for the evaluation of user-
perceived instantaneous availability in service networks. It
uses three input models: An ICT infrastructure model, a
service description and a mapping model to correlate them.
It considers the individual availability of every component
that would potentially be required during service provision
for a given pair requester and provider. Moreover, the exact
component access times during service provision are taken
into account in the evaluation, which results in a more
accurate estimation, especially for longer execution times.

As input models, the Unified Modeling Language (UML)
was adopted for infrastructure and service descriptions as
it is standardized and widely used, especially for design
purposes. For the mapping model, XML was chosen due
to its versatility. Visualization has been an important factor
and these decisions guarantee that the models remain human-
readable. The methodology relies on a model transformation,
aided by a path discovery algorithm to identify potentially
required components. It generates a model (reliability block
diagram or fault-tree) that allows evaluation of instantaneous
service availability. This model can be evaluated for each
instant in a time range of interest.

To demonstrate the feasibility of the methodology, an
exemplary email service was analyzed in two scenarios: (1)
instantaneous service availability from different user per-
spectives and (2) the impact on user-perceived service avail-
ability when modifying network components. The results
show availability as a dynamic property and indicate how
the methodology can improve network design by estimating
the impact of new component deployment.

Future work will focus on improving the accuracy of
the resulting availability estimation especially with respect
to short term effects on the infrastructure. Extensions to
support variable failure and repair rates will be examined.
Furthermore, optimization of the particular methodology
steps will be evaluated to improve scalability.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design, 1st ed., ser. The Prentice Hall Service Technol-
ogy Series from Thomas Erl. Prentice Hall PTR, Aug. 2005.

[2] Service Availability Forum, “Application interface specifica-
tion,” Aug. 2013. [Online]. Available: http://www.saforum.org

[3] N. Milanovic and B. Milic, “Automatic generation of service
availability models,” IEEE Transactions on Services Comput-
ing, vol. 4, no. 1, pp. 56–69, Jan. 2011.

[4] M. Malek, B. Milic, and N. Milanovic, “Analytical availabil-
ity assessment of IT services,” in Service Availability, ser.
Lecture Notes in Computer Science, T. Nanya, F. Maruyama,
A. Pataricza, and M. Malek, Eds. Springer Berlin Heidelberg,
2008, vol. 5017, pp. 207–224.

[5] S. Even, Graph Algorithms, 2nd ed. Cambridge University
Press, Nov. 2011.

[6] D. Wang and K. S. Trivedi, “Modeling user-perceived service
availability,” in Service Availability, ser. Lecture Notes in
Computer Science, M. Malek, E. Nett, and N. Suri, Eds.
Springer Berlin Heidelberg, 2005, vol. 3694, pp. 107–122.

[7] N. Milanovic, “Models, methods and tools for availability as-
sessment of it-services and business processes,” Habilitation,
Technische Universität Berlin, Jun. 2010.

[8] ARTEMIS Embedded Computing Systems Initiative,
“CHESS project,” Jul. 2012. [Online]. Available:
http://www.chess-project.org

[9] S. Bernardi, J. Merseguer, and D. Petriu, “An UML profile
for dependability analysis and modeling of software systems,”
University of Zaragoza, Tech. Rep. RR-08-05, May 2008.

[10] Object Management Group, “MARTE profile,” Feb. 2011.
[Online]. Available: http://www.omgmarte.org

[11] A. Dittrich, I. Kaitovic, C. Murillo, and R. Rezende, “A
model for evaluation of user-perceived service properties,” in
International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW). IEEE Computer
Society, May 2013, pp. 1508–1517.

[12] A. Dittrich and R. Rezende, “Model-driven evaluation of user-
perceived service availability,” in Dependable Computing, ser.
Lecture Notes in Computer Science, M. Vieira and J. C.
Cunha, Eds. Springer Berlin Heidelberg, May 2013, vol.
7869, pp. 39–53.

[13] A. Dittrich, B. Lichtblau, R. Rezende, and M. Malek, “Mod-
eling responsiveness of decentralized service discovery in
wireless mesh networks,” Aug. 2013, unpublished manuscript,
available on request.


