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Abstract—Experiments are a fundamental part of science.
They are needed when the system under evaluation is too complex
to be analytically described and they serve to empirically validate
hypotheses. This work presents the experimentation framework
ExCovery for dependability analysis of distributed processes. It
provides concepts that cover the description, execution, mea-
surement and storage of experiments. These concepts foster
transparency and repeatability of experiments for further sharing
and comparison. ExCovery has been tried and refined in a
manifold of dependability related experiments during the last
two years. A case study is provided to describe service discovery
as experiment process. A working prototype for IP networks runs
on the Distributed Embedded System (DES) wireless testbed at
the Freie Universitiit Berlin.

I. INTRODUCTION

Experiments are a fundamental part of science. They are
needed when the system under evaluation is too complex to
be analytically described and they serve to empirically validate
hypotheses. This is especially true for dependability analyses
in distributed systems, which are often of extensive size and
exhibit complex fault behavior. Experiments are fundamental
to support research in this area. However, due to their diverse
focuses it remains difficult to repeat, classify, evaluate and
compare the different results. A consistent experimentation
environment (EE) could help to unify related experiments
and thus, greatly improve the impact of individual results.
In this work, we present ExCovery, an EE for dependability
research of distributed processes. A formal description to
specify experiments has been developed, which forms the
basis of ExCovery. It allows for automatic checking, execution
and additional features, such as visualisation of experiments.
ExCovery is expected to foster repeatability and transparency
by offering a unified experiment description, measurement
mechanism and storage of results.

Service oriented architecture (SOA) describes services as
the building blocks of system design. A service is an abstract
functionality in a network provided by an interface clients
can connect to. SOA enforces the principle of discoverabil-
ity, which means that structured data is added to service
descriptions to effectively publish and discover individual
providers. Communication of this data is done using service
discovery (SD). We provide a case study of using ExCovery
for experiments on SD in wireless IP networks.

The rest of the paper is structured as follows. Section
] covers the topics of scientific experimentation and design
of experiments. Section [[II] contains background information
about service discovery. ExCovery is presented in Section
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Fig. 1. Model of a generic experiment process

its concepts illustrated with examplary experiment description
code. The description of SD as a specific experiment process
follows in Section [V] An overview of the current ExCovery
prototype implementation is given in Section [VI} Section
concludes the work.

II. THE ART OF EXPERIMENTATION

Experiments play an important role in computer science by
supporting theories inferred from observations or mathematical
models. With increasing complexity of computer systems and
networks, exploratory experiments are themselves the source
of such theories. The subject of an experiment can be charac-
terized as a black box process as illustrated in Figure [T} Inputs
or factors can be controlled, outputs or responses observed.
During an experiment it needs to be identified which factors
exist and how they influence the responses. Controlling factors
to observe their influence can be done one at a time or
by manipulating multiple factors in a factorial experiment.
Usually, experiments are run in series to capture the variation
among multiple runs of the same experiment. Such series of
controlled experiments can be called an experimental system
[1]. Experiments need to be reliable in a sense that they
must be verifiable when repeated under similar conditions.
Experiment design must therefore keep repetition in mind
and its publication must contain all necessary information to
do so. Experiments further need to fulfill requirements for
internal and external validity. Internal validity means that the
causal relationships between the factors and responses should
be verified. External validity deals with the generalization of
experiment results.

A. Basic Terms and Principles

In the context of this work, an experimentation environment
(EE) is defined as a set of tools with the purpose of describing,
executing and evaluating experiments on a given subject, using
a methodology specific to that subject. The actual setting in
which the experiments and the EE are run is called platform.
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1) Experiment Factors: There are different sources of vari-
ation among individual experiments which are called factors.
A treatment factor is “any substance or item whose effect on
the data is to be studied” [2| p.8]. A treatment factor can have
continuous values but usually has discrete levels that are to
be applied to study its effect. Treatment factors can be further
classified as design factors, intentionally varied during the ex-
periment, held-constant factors, whose impact is intentionally
neglected and allowed-to-vary factors, known to have a minor
influence that can be compensated by applying randomization
and replication (see Section [[I-A3). [3| p.15] Nuisance factors
on the other hand have an unwanted effect on the output. They
can be divided into controllable and uncontrollable nuisance
factors. The former, often called blocking factors, can be fixed
by the experimenter to reduce their impact on the response.
The latter, also called covariates, can not be set but measured.
Their effects can be minimized by covariance analysis. A noise
factor causes random variations in the responses but can be
controlled during the experiment.

2) Experiment Design: As defined in [4]], a treatment is
the entire description of what can be applied to the treatment
factors of an experimental unit, the smallest unit to which
such treatment can be applied. An observational unit then
is the smallest unit on which a response will be measured.
The experimental design defines which treatments are to be
observed on which experimental units [2| p.6]. Following [J5],
it can be divided into treatment design, a specification of
the treatments used in an experiment, error control design,
defining how the specified treatments are to be applied to
reduce unwanted variations, and sampling and observation
design, which decides on the observational units and whether
uni- or multivariate observations are to be taken. Experiments
tend to be time consuming. Proper planning of experiments
follows a design to maximize the gained information per run,
expressed in a higher precision of the response or in an
increased significance of factor relationships. Improvements
are achieved by properly structuring the factor and factor
level variations over the required number of runs. A thorough
explanation of experiment designs and for which objectives to
apply them can be found in [2], [3].

3) Replication, Blocking and Randomization: To improve
the validity of experiments, three interconnected principles
are applied. Replication increases the number of experiment
runs to be able to average out random errors in responses
and to collect data about the variation in responses over a
set of runs. Care has to be taken in the selection of held-
constant factors to allow for proper replication. Blocking means
partitioning observations into groups, or blocks, in such a way
that observations in each block are collected under similar
experimental conditions [2]]. Statistical analysis requires that
experiment observations are independently distributed random
variables [3]. Randomizing the assignment of treatments to
experimental units as well as the temporal order and spacial
choice of multiple runs takes care of this requirement. An
experiment design is called completely randomized when all
treatment factors can be randomized.

B. Experiments in Computer Science

The role of experimentation in computer science has been
the root of numerous debates, for example in [[6], [7]. Seen as
an engineering discipline, all subjects of inquiry in computer

science are synthetic, as created by man. An often expressed
opinion is that phenomena in computer science should be
derived and explained following the construction of these
subjects, instead of observing them as natural phenomena.
However, the complexity of these subjects and their relation-
ships prohibits such deduction. Additionally, the subjects of
computer science have become part of the world around us
and interact with it, creating not entirely synthetic hybrids.
As such, observation as in natural sciences can be justified
just as the testing of hypotheses to assess and understand
man-made systems. When doing experiments in computer
science, challenges exist mainly related to observation and
repetition. It is not always clear which responses to observe
and how to do it in such a way that the observation has
no impact on the response itself. Modern computing systems
provide ways to observe tens of thousands of parameters and
observing them — measuring, recording and extracting — has to
be done in the least invasive way. Also, repeating experiments
can be difficult due to dependence on the original hardware
platform. Where technology is proceeding at such rapid pace,
experiments should be planned as independent as possible from
the hardware they are running on, that is, if the hardware itself
is not the subject of experimentation.

C. Experimentation Environment

To identify the demands addressed by ExCovery addresses,
it is necessary to define what an EE is and what it needs to
provide to an experimenter. In general, an EE allows to perform
a certain class of experiments in a controlled environment. It
facilitates the identification and manipulation of factors and
the observation of these manipulations on the responses. The
amount of possible control depends on the characteristics of
the EE. For unwanted influences that cannot be controlled, the
EE should provide the possibility to record them so they can
be considered during analysis at a later stage. To foster the
repeatability, correctness and transparency of experiments, an
EE should use a description for setup, execution and evaluation
of experiments. A common output format for measurements,
logs and diverse meta information should be provided.

1) Network Experimentation Platforms: ExCovery focuses
on experiments to evaluate the dependability of distributed
processes, e.g. network protocols. To execute experiments
and observe responses, it relies on network experimentation
platforms. The most popular forms are simulators and testbeds,
or mixed forms of both, such as virtualized testbeds or
simulators with interfaces to real networks or real protocol
implementations. It generally strengthens the external validity
of an experiment if it is run in a diversity of platforms.

Simulators are software artifacts that simulate real-world
processes by acting according to an abstract model of such a
process. They can be discrete event-driven simulators, which
calculate the state of the simulated object only when its
state changes, or real-time simulators, which calculate the
continuous behavior of the simulated object over time. Mixed
forms exist, for example, where an event-driven simulator is
synchronized to a wall clock. While simulators have a perfect
reproducibility of experiments, good scalability and generally
a reduced execution time, their abstractions often struggle to
capture the properties and behavior of real-world distributed
systems [8, p.2]. A testbed is a distributed system made of
real network nodes. Testbeds usually provide means to manage



experiment schedules and setup, data acquisition and storage.
Testbeds allow less control over factors than simulators but
measurements are the result of a realistic interplay of factors.
As such, testbed usually allow to represent a specific environ-
ment (e.g. wireless mesh or large scale internet network) very
well. An approach to unify generic network experimentation
across simulators, emulators and testbeds is proposed with
NEPI [9], an integration framework for network experimen-
tation which creates a common model of experimentation that
can be applied to many physical Testbeds as well as to the ns-3
simulator and the netns emulator. Another approach to achieve
a unified system for executing distributed systems experiments
on all kinds of testbeds is called Weevil [10], [11].

ITI. SERVICE DISCOVERY FUNDAMENTALS

In SOA, emphasis is put on the consideration of different
ownership domains, so an important aspect is the interoper-
ability among services. There must be a way for potential
partners to get to know of each other. This obligatory aspect is
called visibility which is composed of awareness, willingness
and reachability. Among the principles introduced by SOA to
support its paradigm, discoverability is related to awareness.
A comprehensive list and description of principles can be
found in [[12]. On the network side, service discovery (SD)
focuses on awareness and discoverability: Structured data is
added to services to be effectively published, discovered and
interpreted. Service discovery protocols (SDPs) take care of
communicating this data, to announce, enumerate and sort
existing service instances.

A. Basic Discovery Concepts and Roles

An abstract service, also known as service type or service
class, is provided by concrete service instances in the network.
A set of service classes S can be provided on a set of providers
P which then use an SD protocol to make the service known
to interested users. SD typically connects the three different
roles of user agent, service agent and directory agent [13].
They are also known as service consumer, service provider
and service broker [14]. For the remainder of this paper, we
will use the taxonomy of a general SD model developed by
Dabrowski et al. [|15]], in which these roles are called service
user (SU), service manager (SM) and service cache manager
(SCM). An SM publishes its service on behalf of a service
provider either autonomously or via an SCM. It makes a
service description available with information on how and
where its service can be invoked: The SM identity, a service
type specification, an interface location or network address
and optionally, various additional attributes. The SU discovers
services on behalf of a user either by passively listening to
announcements done by SAs or SCMs, by actively sending
out queries to look for them, or by doing both. Discovery can
happen in separate steps, enumerating discoverable instances
first and then selectively retrieving the description. Also, not
only services can be discovered, but administrative scopes,
SCMs and service types, depending on the SDP. Finally, an
SCM caches service descriptions of multiple SMs to maintain
a list of present services that can be queried by SUs. SCMs
are usually used to improve scalability. It should be noted that
most SDPs implement also a local cache on SUs and SMs to
reduce network load.

Discover SCM(s),
Request SM(s)

Request SM(s)

Answer Answer Discover SCM(s),
Requests Requests (De-)Register
Fig. 2. Illustration of service discovery architectures: two-party (left) and

three-party (right).

B. Discovery Architecture and Communication

Two different SD architectures can be distinguished, as
depicted in Figure[2] In two-party or decentralized architecture,
there exist only SUs and SMs in the network which commu-
nicate directly among each other. The architecture is called
three-party or centralized if there is one or more SCM present.
Centralized does not imply a preceding administratitive con-
figuration because an SCM itself can be discovered at runtime
as part of an SD process. There exist mixed forms that can
switch among two- and three-party, called adaptive or hybrid
architectures. Depending on the role and architecture, different
communication types are used, unicast, multicast or broadcast.
Some SDPs include routing mechanisms, hence, overlay net-
works in their communication logic which is generally called
SD with structured communication approach. Others leave this
to the underlying layers, following an unstructured approach.
Furthermore, the communication scheme used for the actual
discovery can be classified as passive (or lazy), active (or
aggressive) or directed. In passive discovery, SUs discover
discoverable items only by listening to their unsolicited an-
nouncements. When doing active discovery, SUs actively send
out multi- or broadcast queries. In directed discovery, SUs
actively send unicast queries to a given SCM or SM. There are
many messages used by the SDPs to coordinate the distributed
system, maintain a consistent state and optimize network
traffic. The currently most common SDPs are presented and
compared in [[15]-[17]. In [[18]—[20], SDPs for pervasive and
ubiquitous computing systems are surveyed, which are the
target platform of the prototype in Section

IV. THE EXPERIMENTATION ENVIRONMENT ExCovery

We will now present the main concepts of the proposed
experimentation environment ExCovery with its core, the for-
mal abstract description of an experiment using the extensible
markup language (XML). It includes definitions of the experi-
ment with its input factors, the process to be examined, of fault
injections or manipulations and diverse platform specific and
informative declarations. ExCovery further provides a unified
measurement concept that determines which and how data are
stored for later analysis. An overview of the different concepts
and the experiment work flow is illustrated in Figure [3|In
the first preparation step, the experiment is designed by the
experimenter following guidelines as mentioned in Section
[1-A2] The individual descriptions are explained in Section

IV-C| Platform setup is necessary to prepare the translation
of descriptions to the target platform, e.g. a specific testbed
or simulator. Among others, this could include a deployment
of programs, modules and configuration files. The experiment
is then executed by the experiment master, a program that
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Fig. 3. Overview of ExCovery concepts and experiment workflow.

executes experiment runs as specified in the description. Each
run is a sequence of actions performed on the participating
nodes, described as the main process under evaluation and a set
of injected faults or manipulations. The master and all nodes
monitor and record dedicated parameters during each run, such
as raw packet captures and the complete temporal sequence of
actions and events. These data will be saved in a temporary
location locally. After experiment execution, the collected data
are collected and conditioned so that a common time base for
all actions, events and packet measurements is established.
Finally, data are stored into a single results database that
contains all conditioned measurement data, created log files
and the complete experiment plan with the exact sequence of

treatments (see Sections and [[V-F).

A. Platform Requirements

To integrate a specific target platform in ExCovery, it
must support several features. Most of the features are needed
to establish a controllable environment or to compensate for
missing control and to allow detailed measurements. As such,
these are mainly an issues for testbeds, simulators generally
can be integrated with less effort.

1) Experiment Management: There must be a separate
and reliable communication channel between the experiment
master and the nodes participating in the experiment process.
In simulators, this is usually provided by a software interface
while testbeds need to possess physically separate and non-
interfering network interfaces. During experiments, full, privi-
leged and access to all nodes is mandatory. The platform needs
to cleanly separate concerns of multiple users.

2) Connection Control: Full control over the network con-
nections of the individual network nodes is needed. Network
interfaces need to support activation and deactivation. Further-
more, it needs to be possible to manipulate packets sent over
these interfaces based on defined rules. This covers dropping
of packets, delaying, reordering, and modifying their content.

3) Measurement: There must be methods to capture pack-
ets with their exact local timestamps and their complete and
unaltered content. To facilitate a comprehensive subsequent
analysis, a packet tracking mechanism is required. Usually
available in simulators, in testbeds this means tracking the
routes of packets hop by hop, or attaching unique identifiers
to packets [21]. Finally, the platform needs to support time
synchronization among all participating nodes and it needs to
support quantification of the synchronization error.

B. Measurement and Recording

The section clarifies the basic observations that are possible
using ExCovery, how they can be observed and how this
can help to unify related experiments. ExCovery follows the
principle of collecting as much data as possible to support
diverse analyses on the same experiment data at later time,
emphasizing reusability and repeatability. Basic recordable
data for network protocols are the results of protocol operations
as reflected by state changes on the participants and network
messages sent among participants. Additionally, ExCovery has
a plugin concept to extend these data with custom measure-
ments on demand.

1) Events: State changes on nodes in the context of
ExCovery reflect events and occur, for example, when an
experiment run is initialized or when a fault injection is started
or stopped as defined by the experiment plan. Events are
associated with the node on which they occur. They contain a
local time stamp and may have additional parameters, such as
the identifier of the experiment run that is being initialized. To
control the experiment execution, nodes can be synchronized
using global events (see Section [[V-C2).

2) Packets: Packets are the basic communication data of
network protocols. As opposed to events, single packets are
not easily identified: Their location changes as they traverse
the network, retransmissions and network loops complicate the
correct localization at any given time. Packets are recorded
to facilitate verification of the recorded event list and to
derive statistical connection parameters during later analysis.
A measured packet consists of a time stamp, representing the
local occurrence of that packet, a unique identifier, a source
and destination network address and the packet content itself.

3) Time: Events and packets have a local time stamp of to
the node they were measured on. As ExCovery is focused on
distributed systems, it defines mandatory measurements to be
done before each run to estimate the time difference of each
participant to a reference clock. This allows to construct a valid
global time line of events and packets, avoiding causal conflicts
due to local clocks deviating between experiment runs.

4) Topology: To improve repeatability, a rudimentary de-
scription of the network topology is measured as hop count
between the participating nodes. This measurement is done
before and after executing an experiment. A more advanced
topology recording is anticipated for future versions of
ExCovery.

5) Recording: Each participating node has its own tempo-
rary storage for recorded data, organized into data belonging to
single runs and data valid for the complete experiment. Time
synchronization measurements are stored on the experiment
master. Plugins have a separate storage location on the node
where the custom measurements are done. ExCovery does



not impose a specific storage mechanism but requires that
this storage is accessible during the subsequent collection and
conditioning phase (see Section [[V-F).

C. Abstract Experiment Description and Execution

ExCovery executes experiments on the base of an abstract
description made up of three parts. The first contains the
experiment design, which factors are applied in which com-
bination and order. The second part contains manipulations
on the process environment and the participants themselves,
detailed in Section The third part is the description of
the distributed process to be examined. ExCovery uses XML to
notate the description. An XML schema description is provided
with the framework code. In the following, the parts that create
an abstract description are defined and described.

Factor Part of the treatment applied to the experimental unit.
Consists of a set of levels. Depending on the design, levels
are applied one after another (OFAT) or randomized.

List of factors Contains all factors used, sorted. In an OFAT
design the first factor varies least often during execution
while the last factor changes every run.

Level Concrete value a factor can take, as input variables to
the sub-processes of each run. Levels can be of different
types. As such, they can control type and duration of
fault injections (see Section or represent mappings
of abstract nodes to actors in the experiment process.

Set of levels All levels that should be applied during the
experiment. Order of application is determined by the
factor definition. There is only a single level if the factor
should be kept constant during the whole experiment.

Replication factor Parameter defining an integer number of
replications to be done with each treatment.

Abstract node Actor of the experiment process or of a node
specific fault injector. Identified by a node identifier, such
as a unique host name.

Environment node A node which is not participating as actor
in any node specific process. Used for example to produce
generate network load.

Actor description Process prototype to be executed on one
specific actor of the experiment process. Each abstract
node is mapped to one actor description, multiple abstract
nodes can instantiate the same actor description.

Experiment process Actual experiment operation that is to
be excuted and measured. Description consists of actions
performed on multiple nodes, synchronized by flow con-
trol functions that wait for a certain time or for certain
events issued by the nodes.

Manipulation process Main part of the treatment. Similar to
experiment processes, represents a sequence of faults or
impairments that should happen on a node.

Environment manipulation process As experiment process
and manipulation process but not node specific. Uses sim-
ilar synchronization methods, but controls manipulations
to the environment, like traffic generation.

A rudimentary beginning of an experiment description is
depicted in Figure 4] Two abstract nodes A and B are to be
mapped by the processes described later. To support a basic
classification of experiments, three parameters describing the
discovery architecture and protocol used are defined as key-
value pairs.

<experiment_name>"just a name"</experiment_name>
<totalnodes>"2"</totalnodes>

<abstractnodes>
<abstractnode id="A"></abstractnode>
<abstractnode id="B"></abstractnode>
</abstractnodes>

<sd_level>"user"</sd_level>
<sd_protocol>"zeroconf"</sd_protocol>
<sd_arch>"2-party"</sd_arch>

Fig. 4. Rudimentary experiment description with informative parameters
about discovery process.

<factorlist>
<factor id="fact_nodes" type="actor_node_map"
usage="blocking">
<levels><level>
<actor id="actorO"><instance id="0">A</instance></actor>
<actor id="actorl"><instance id="0">B</instance></actor>

</level></levels>
</factor>
<factor u

ge="random" type="int"
er of

d="fact_pairs">
y distributed node pairs to

< generate ->
<levels>
<level>5</level><level>20</level>
</levels>
</factor>
<factor usage="constant" id="fact_bw" type="int">
<!-- datarate generated load</description> —->

<levels>
<level>10</level><level>50</level><level>100</level>
</levels>
</factor>
<replicationfactor usage="replication" type="int"

id="fact_replication_1id">1000
</replicationfactor>
</factorlist>

Fig. 5. Several defined factors in the description and their levels.

1) Execution: To execute the overall experiment and its
individual runs from the abstract experiment description,
ExCovery generates treatment plans from replications, the
factors and their levels. Plans are OFAT if no custom factor
level variation plan is given. The various random values used
in ExCovery are generated using pseudo-random generators.
This allows for perfect repeatability of random sequences
used within an experiment when initialized with the same
seed. Which seed is used for initialization is clearly defined
in the experiment description so that all random sequences
can be reproduced. ExCovery uses four internal functions for
the experiment flow. Experiments are initialized by calling
experiment_init on every participant, which takes care
of the necessary preparations before all individual experi-
ment runs. Each run is then initialized by run_init. There
further exist the respective exit functions run_exit and
experiment_exit.

Figure [5] shows the definition of several factors and their
levels. First, the abstract nodes defined in Figure [ are assigned
actor roles actor(Q and actorl. Then, two different factor are
defined with various levels to describe the load generation that
is to be applied during experiments, in this case a random
number of 5 and 20 node pairs that will exchange data with
first 10, 50 and then 100 kilobits per second. Each treatment
will be repeated 1000 times.

Each run consists of the three phases preparation, execution
and clean-up. During preparation, the whole environment of
the experiment process must be reset to a defined initial



working condition. Software agents are initialized. In testbeds,
for example, network packets generated in previous runs must
be dropped on all participants. Preliminary measurements can
be done which are needed for compensation of incomplete
control over the environment, such as clock offsets for all
participants. During execution, the actual experiment process
is executed, observed and recorded. Clean-up takes care of
correctly terminating a run on each participant. All steps will
be repeated during each run, this has to be considered when
estimating the total time an experiment needs to finish.

2) Description of Processes: ExCovery provides common
mechanisms to control execution of the defined processes. Two
types of processes can be differentiated, depending whether
they relate to abstract nodes or to the environment. Abstract
node processes are mapped to real nodes during experiment
execution, such as protocol actions or fault injection pro-
cesses. Environment processes are performed by all nodes,
such as dropping packets on all network interfaces to reset
the environment. Every process is described as a sequence
of actions. Processes run concurrently on the nodes so to
specify this sequence, one needs to consider timing and desired
or necessary dependencies. ExCovery defines methods for
synchronization of the execution to provide basic flow control.

wait_for_time Lets the process wait for a fixed delay in
seconds.

wait_for_event Lets the process wait until the specified event
is registered on any participant. An event can be specified
by its name, location and any of its parameters. The
location is either a single abstract node or a subset of
nodes specified by an actor role. Event parameters can
be of diverse types. If omitted, they default to “any*“. A
time-out in seconds can be set.

wait_marker Creates a time stamp that will be used by
the next wait_for_event call, which considers only
events occurring after that time stamp.

event_flag Used to create local events to let process actions
depend directly on each other.

Besides these flow control functions, there are process
specific actions, environment actions and manipulation actions.
Each action can have a list of parameters. This allows to
describe manifold scenarios. In Section [V} service discovery as
an experiment process is described to illustrate this. Manipula-
tion Processes are described in Section Figure [6] shows
a code fragment where the different processes are defined,
without the actual sequences of actions that will be described
later. Among the node processes, the role actorQ is defined
and as possible actor nodes, the abstract nodes fact_nodes
from the factor list are referenced. Environment processes do
not need a definition of nodes.

D. Fault Injection and Environment Manipulation

ExCovery has a concept for intentional manipulations done
on participant nodes and on their network environment. Ma-
nipulations cover direct fault injections cause failures in a
targeted area. Fault provocation is used when direct injection
is not desirable or possible and characterizes actions that are
known to provoke failures in the targeted area. The main faults
considered are communication faults. ExCovery provides a
simplified fault model to allow for the description of basic
fault behavior. Fault injection processes can have common

<processes max_run_time="120">
<node_processes name="...">
<process_parameters>
<actor_node_map><factorref id="fact_nodes"/>
</actor_node_map>

rameters>

</actor>
</node_processes>
<env_process>

<!-- list of environment process actions ——>
</env_process>
</processes>
Fig. 6. Template for the description of node and environment processes.

parameters describing their temporal behavior: duration, rate
and randomseed. The duration specifies the amount of time
a fault should be applied to the target. The rate specifies a
percentage of a given duration in which a fault is active. The
fault is active in one continuous block, its activation time is
chosen randomly using the randomseed.

1) Fault Injections: In addition to the common fault pa-
rameters, injections can have individual parameters to further
define their behavior. The mechanisms for communication fault
injection are explained in the following. Whenever the term
packet is used, it refers to packets belonging to the experiment
process. It should be noted that all injected faults add up to
already existing communication faults in the target platform.

Interface fault No messages are transmitted or received on
the specified interface in the specified direction as long
as this fault is active. Direction can be receive, transmit,
both, or chosen randomly.

Message loss Defines a given probability for every packet
of the experiment process to be dropped. Direction is
analogous to the interface fault.

Message delay Applies a given constant delay to every
packet.

Path loss and path delay Path loss and delay are message
loss and delay faults, selectively affecting only the com-
munication between the target and a given second node.

2) Environment Manipulations: Environment manipula-
tions are applied on a global level and involve more than one
node, possibly all specified environment nodes. Manipulations
include the previously defined fault injections. Additionally,
the following manipulations can be applied to create different
conditions for the experiment.

Traffic generator Creates network load between a given
number of node pairs. Each pair bidirectionally communi-
cates at a given data rate (see also Figure [3)). Pairs can be
randomly chosen from the acting nodes, non-acting nodes
or all nodes. They vary from run to run as determined by
a switch amount parameter.

Drop all packets All experiment nodes stop receiving, send-
ing and forwarding the experiment process packets.

Every fault injection and environment manipulation but the
traffic generator is started only once and without a given du-
ration, needs to be explicitly stopped. Given is just the default
list supported by ExCovery. There also is a generic function,
which has an arbitrary list of parameters that are given to the
acting nodes to be executed. However, an experimenter should



<env_process>
<env_actions>

<event_flag><value>"ready_to_init"</value></event_flag>

<env_traffic_start>
<bw><factorref id="fact_bw" /></bw>
<choice>0</choice>
<_/77 t c es iden

s -

<random_switch_amount>"1"</random_switch_amount>
<random_switch_seed>

<factorref id="fact_replication_id" />
</random_switch_seed>
<random_pairs><factorref id="fact_pairs" />

</random_pairs>
<random_seed><factorref id="fact_pairs"/>
</random_seed>
</env_traffic_start>
<wait_for_event>
<event_dependency>"done"</event_dependency>
</wait_for_event>
<env_traffic_stop />
</env_actions>
</env_process>

Fig. 7. Tllustrative example of environment process for traffic generation.

preferably extend ExCovery by defining a plugin with new
functions and their implementation.

3) Description of Manipulation Processes: Manipulation
and fault injection processes are defined in the experiment
description as a series of actions an events. This list is executed
in sequential manner and can contain flow control functions
as described in Section A node manipulation process
is created for each abstract node it is specified for while the
environment manipulation process is implicitely supported on
all nodes. The specific actions activate or deactivate the faults
and manipulations as detailed in Section [[V-DI| and [TV-D2}
One event is generated by each action to signal its start or
stop, respectively. Parameters of these actions can be constant
or varied during experiment execution. Variation is realized
by references to factors instead of fixed values. The manip-
ulation actions can be used to extend the experiment process
description. An experimenter can place desired functions in
line with the other functions used in the experiment process,
or into separate manipulation processes that run along with
each experiment process. This depends on whether the faults
and manipulations shall be synchronous with the experiment
process or autonomous. Figure [7| shows a shortened listing of
a traffic generation process. After generating a ready_to_init
event, it uses the factors from Figure [5|to choose and configure
traffic generation by a set of environment nodes, switching one
pair of nodes in every run. The manipulation remains active
until an event done is registered.

E. Description of Specifics

To enable ExCovery to instantiate an abstract experiment
description on a concrete platform, some specific settings are
necessary. For reasons of brevity, not all settings will be
mentioned in this paper. This section explains the most im-
portant of these settings, which are included in the experiment
description. For execution on a specific platform, a mapping
of abstract and environment nodes to concrete usable nodes
of the platform is required. This mapping can change from
one experiment to another on the same platform due to the
availability of nodes or when deliberately changing the nodes.
ExCovery identifies nodes by their host name and IP address.
The host name should be constant during an experiment run.

<platform_specs>
<spec_node_mapping>

<spec_actor_map abstract_id="A" id="t9-105"
ip="172.18.17.22" />
<spec_actor_map abstract_id="B" id="a3-119"

ip="172.18.17.173" />
<spec_env_map 1d="a3-005" ip="172.18.17.178" />
1

<spec_env_map 1d="a3-010" ip="172.18.17.180" />
<spec_env_map 1id="t9-k61" ip="172.18.17.92" />
<spec_env_map 1d="t9-k63" ip="172.18.17.46" />

</spec_node_mapping>
</platform_specs>

Fig. 8. Platform specification in the experiment description.

When an IP addresse changes due to reconfiguration of a
network interface, for example after a injection of such a fault,
an event is generated to signal this. Finally, an experimenter
can define a list of special parameters in the description file
that can be used within the experimentation environment to
expose specific parameters used in the implementation to the
description file. This allows platform specific modifications
on the ExCovery’s execution program to be reused for many
experiments without having to modify the implementation each
time. Figure [] illustrates a compact version of a platform
specification. Two actor nodes and four environment nodes
exist. Actor nodes map to an abstract node id that has been
previously defined. All nodes have a unique identifier and a
network address that can later be used to analyze the recorded
event and packet lists.

F. Measurement Storage and Conditioning

ExCovery provides four levels of storage for experiments,
with defined data structures. This allows reusable data ac-
cess functions among experiments. The first storage level is
the abstract experiment description itself, stored in an XML
document. This document can be exchanged and loaded for
execution and analysis. The second level is the intermediate
storage for all concrete experiment data: experiment results
and the software artifacts used during execution. Each log file
and measurement is stored corresponding to a run identifier and
associated to the node it originates from. Currently, ExCovery
uses a special hierarchy on a file system to store second level
data. On the way to the third storage level, data are conditioned
by first evaluating the synchronization measurements taken
during the experiment (see Section and unifying the
time base of all second level measurements. Then, the event
list and captured packets are split up into single entries. Data
from the second level plus the experiment description are then
stored into a single package on the third level. This package
represents one complete experiment and is preferably stored
as a database to unifiy and accelerate data access and extrac-
tion methods. Facilitating exchange of experiments, ExCovery
currently stores the third level in a file based relational SQLite
database. The fourth level describes the integration of multiple
experiments into a single repository to facilitate comparison
and analysis covering multiple experiments. To date, ExCovery
does not realize this level.

Table |I| shows a representation of a subset of the ta-
bles and their attributes on the third level. The table
ExperimentInfo represents the experiment as a whole
and contains only one tuple made of the abstract experiment
description, the version of ExCovery and a descriptive name
and comment. Logs contains all raw log files and EEFiles



TABLE L TABLES AND ATTRIBUTES OF CURRENT STORAGE CONCEPT
Table Attributes
ExperimentInfo ExpXML, EEVersion, Name, Comment
Logs NodelD, Log
EEFiles 1D, File

ExperimentMeasurements | ID, NodelD, Name, Content

RunID, NodelD, StartTime, TimeDiff

RunID, NodelD, Name, Content

RunID, NodelD, CommonTime, EventType, Parameter
RunID, NodeID, CommonTime, SrcNodeID, Data

RunlInfos
ExtraRunMeasurements
Events

Packets

the used ExCovery executables to support transparency and
assist development. In ExperimentMeasurements, spe-
cific named measurements are stored that are done once per
experiment. As for run based data, RunInfos contains for
each run and node the start time of the run and the offset of the
node clock to the reference clock. Custom measurements are
stored in ExtraRunMeasurements. The table Packets
contains for each packet the common time stamp of detection,
its originating node and the raw packet data. The Events
table lists all recorded events and their parameters, identified
by the run, the originating node and a common time stamp.
This schema represents a preliminary approach to store data.
Several future improvements are possible, for example by
using a dimensional database model to store experiments in
a data warehouse structure.

V. ABSTRACT SERVICE DISCOVERY PROCESSES
DESCRIPTION

To demonstrate the transfer of the described concepts to
concrete distributed processes that are to be examined in
experiments, we will now explicate how to describe generic
service discovery (SD) as an experiment process to be used
within ExCovery. It provides a temporal and causal sequence
of all actions of the participating nodes as introduced in Section
facilitating flow control functions from Section The
description can contain multiple actors representing SMs, SUs,
or SCMs. For each actor a number of instances can be created
to represent all participants of the SD process. The model
developed in [[15] defines a set of actions for a generic SD
process, namely “Configuration Discovery and Monitoring”,
“Registrations and Extension”, “Service-Description Discovery
and Monitoring”, and “Variable Discovery and Monitoring”.
Only these main actions are considered in the SD process
description, with an optional list of parameters to specify
concrete variants of the actions. The description does not
intend to model an SD protocol (SDP) specific behavior in
detail, but to give an abstract description of a service discovery
scenario. The details of executing the description are left to
the SDP implementation, so that multiple implementations
which adhere to the same SD concepts can be compared in
experiments. However, executing SDPs are allowed to generate
user specified events which will be recorded by ExCovery.
Actions that can be executed on participating SD nodes are
described as follows.

Init SD Mandatory action to allow participation of a node
in the SD. Represents “Configuration Discovery and
Monitoring”. Depending on the SDP, discoverable items
such and scopes and SCMs are discovered and each
node’s unique identity is established. This action reads
as parameter the role as either SCM or one of SU

and SM. An optional list of parameters configures user
specified parameters of the used SDP. When the SCM
parameter is used, the node generates a scm_started
event. If an SM registers its service on an SCM node,
a scm_registration_add event is generated with
the registering node’s identification as parameter. Anal-
ogously, when a registration is revoked or changed,
the respective events scm_registration_del and
scm_registration_upd are generated. In a hy-
brid architecture, SU and SM agents keeps looking
for SCMs and emit scm_found events when a SCM
has been discovered. When initialization is complete,
sd_init_done is emitted.

Exit SD Stops the previously started role and all assigned
searches and publishings, emitting sd_exit_done
upon completion. To participate again in the SD process,
a node needs to re-run init.

Start searching On SU and SM nodes initiates a con-
tinuous SD process for a given service type, gener-
ating the event sd_start_search. Refers to the
group of “Service-Description Discovery and Monitor-
ing” functions. ExCovery does not distinguish among
passive, aggressive, or directed discovery (SCM). A
service is considered discovered during search when
its complete description has been received, when the
event sd_service_add will be emitted with the
found service’s identifier as parameter. Analogously,
when a service is becomes unavailable, the event
sd_service_del is generated

Stop searching A previously started search is stopped. In-
cludes removal of any notification request previously
given to SCMs. Event sd_stop_search is generated
at the time the search is stopped.

Start publishing Starts publishing an instance of a given
service type, generating a sd_start_publish event.
Refers to the group of “Registrations and Extension”
functions, such as registration on an SCM and manage-
ment of registrations.

Stop publishing Gracefully stops publishing of a given ser-
vice type. Includes further actions like aggressively send-
ing revocation messages or de-registration on SCMs. Gen-
erates a sd_stop_publish event upon completion.

Update publication Updates a previously published service
description upon change. Covers any underlying functions
related to registration on SCMs. Generates an event
sd_service_upd with the service identifier as param-
eter before the update is executed.

Figures [9] and [I0] show descriptions of two-party SD
processes for SU and SM roles using the introduced actions
and events. The SM role in Figure [J basically starts publishing
and and continues until a done event is registered. The SU role
in Figure [I0]is considerably more complex. An SU waits first
for all SMs to emit their sdstart,ublish event, then for the
environment to register the ready;o;nit event. It will then start
searching and finish either when all SMs have been discovered,
having generated their respective sdservice,dd events or when
the deadline of 30 seconds has been reached. In either case,
done is generated and the clean-up phase begins. An example
SD scenario is depicted in Figure [T} It shows a single active
SD in a two-party architecture with a timeline for each actor
SU and SM. Actions are shown as white circles, events as
black circles. Where events are not labeled they inherit the



<actor id="actorO" name="SM">
<sd_actions>
<sd_init />
<sd_start_publish />
<wait_for_event>
<event_dependency>"done"</event_dependency>
</wait_for_event>
<sd_stop_publish />
<sd_exit />
</sd_actions>
</actor>

Fig. 9. SD process in a two-party architecture. Publisher role.

<actor id="actorl" name="SU">
<sd_actions>
<wait_for_event>
<from_dependency>
<node actor="actor0" instance="all"/>
</from_dependency>
<event_dependency>"sd_start_publish"
</event_dependency>
</wait_for_event>
<wait_for_event>
<event_dependency>"ready_to_init"
</event_dependency>
</wait_for_event>
<sd_init />
<wait_marker />
<sd_start_search />
<wait_for_event>
<from_dependency><node actor="actorl" instance="all"/>
</from_dependency>
<event_dependency>"sd_service_add"</event_dependency>
<param_dependency><node actor="actorO" instance="all"/>
</param_dependency>
<timeout>"30"</timeout>
</wait_for_event>
<event_flag><value>"done"</value></event_flag>
<sd_stop_search />
<sd_exit />
</sd_actions>
</actor>

Fig. 10. SD processes in a two-party architecture. Requester role.
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Fig. 11.  Visualization of a one-shot discovery process.

label of the preceding action. In the preparation phase, SU and
SM initialize themselves. This phase ends a fixed time after
the event sd_start_publish from SMI1 is registered, to
let unsolicited announcements of SM1 pass. SU1 then starts a
search, beginning the execution phase. After a time t¢p the
service is discovered and an event sd_service_add is
generated on SU1. The SD scenario finishes here, in the clean-
up phase searches and publications are stopped and the SD
system shut down.

VI. PROTOTYPE IMPLEMENTATION

An ExCovery prototype has been created with the aim of
being reusable on diverse platforms. It abstracts the handling
of the XML experiment description and the resulting run
sequence and parameter variations in separate classes that
can be instantiated by programs to analyze, visualize, trace
or export experiment related data. The core of ExCovery is
implemented using the the Python programming language.
As the first supported platform, an implementation for the
wireless DES testbed at Freie Universitt Berlin (FUB) [22]
is provided. To demonstrate feasability, an implementation for
the SD process in Section [V] exists. This section gives a quick
overview of the prototype, for a comprehensive description
of the implentation the reader should refer to [[17]. It should
be noted that neither code listing presented in this paper is
complete and has been shortened for illustrative purposes.
The full code and descriptions are available on request and
a repository will shortly be publicly accessible.

A. Software components

In accordance to the developed concept the prototype is
composed of one controlling entity (master) and a set of
controlled entities (nodes) as depicted in Figures [3] and [12]
Master and nodes are connected in a centralized client-server
architecture with a dedicated communication channel. They
communicate synchronously using extensible markup language
remote procedure calls (XML-RPC) [23].

The controlling ExperiMaster maintains a list of objects
corresponding to the active nodes in the experiment, on which
actions will be executed. A node object presents the functions
of one node to the master program via XMLRPC and uses
locking to allow only one access at a time. Which action is
executed at which time is specified in process descriptions
loaded from the experiment description file. The master creates
an experiment process thread and a fault thread for each
abstract node in the description. A single thread is created
for the environment manipulations. The actions performed by
this thread and the management actions performed by the
main program can be executed concurrently on all nodes.
The NodeManager is the central component of the nodes
participating in experiments. It handles remote procedure calls
(RPCs) coming from ExperiMaster. Basic procedures exposed
via RPC are the actions for management, fault injection,
environment manipulation and the experiment process actions
as defined in Sections |[IV|and [V| The implementation of these
functions can be delegated to sub-components. For example,
the experiment process actions in the context of this work refer
to SD actions that are implemented by the avahi software
package. Components on a node use the event generator to
signal the occurrence of events, as defined in Section

To allow analysis of properties outside the scope of the
ExCovery processes, for example packet loss and delay, a
network packet tagger is provided. It remains running in the
background on each node. The tagger adds an option to the
header of each selected IP packet and writes a 16 bit identifier
to it, incrementing the identifier with each packet. Additionally,
ExCovery includes a set of Python scripts to collect, condition
and store experiment results in a database.

The presented concept and implementation generally sup-
ports multiple SDPs. They need to provide a Linux imple-
mentation which provides an interface to fundamental SDP
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Fig. 12. Execution components of the provided implementation.

operations, as represented by the actions in Section [V] For
the prototype, the Zeroconf SDP suite Avahi [24]] was used
and modified to allow the association of request and response
pairs. This allows analysis of response times not only on
SD operation level (tr in Figure [TT) but on the level of
individual SD request and response packets, which by default
is not the supported in Zeroconf SDPs. A set of functions
exist for extraction and analysis of event and packet based
metrics. As a time-critical operation, one key property of SD
is responsiveness — the probability that a number of SMs is
found within a deadline, as required by the application calling
SD. ExCovery was originally developed to support and validate
research on SD responsiveness, as in [25], [26]. Due to space
constraints, this work covers the abstract description of these
experiments, their results will be published in future work.

VII. CONCLUSION AND OUTLOOK

This work presents the experimentation framework
ExCovery, to support experiments on the dependability of
distributed processes. It provides concepts that cover the de-
scription, execution, measurement and storage of experiments,
to foster their transparency and repeatability. The descrip-
tion covers the specification of the individual processes of
an experiment and their actors: Fault injection, environment
manipulation and the main process under experimentation
are expressed as interdependent series of actions and events.
Execution takes care of controlling the individual nodes during
experiment runtime, to make sure each run of an experiment
has a clean and defined environment and each node acts
according to the experiment description. ExCovery manages
series of experiments and recovers from failures by resuming
aborted runs. Measurements are taken both on the level of
process actions and events and on the level network packets.
They are stored in a unified database format to faciliate sharing
and comparison of results. As a case study, we provided an
abstract description of service discovery (SD) as experiment
process. ExCovery has been tried and refined in a manifold
of SD dependability experiments over the last two years. A
working prototype runs on the wireless DES testbed at Freie
Universitidt Berlin.
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