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Abstract—Service Discovery (SD) is an integral part of service
networks. Before a service can be used, it needs to be discovered
successfully. Thus, a comprehensive service dependability analysis
needs to include the dependability of the SD process. As a time-
critical operation, an important property of SD is responsiveness:
the probability of successful discovery within a deadline, even
in the presence of faults. This is especially true for dynamic
networks with complex fault behavior such as wireless networks.
This work presents results of a comprehensive responsiveness
evaluation of decentralized SD in wireless mesh networks, specif-
ically active SD using the Zeroconf protocol. For this reason,
the ExCovery framework has been employed, which provides
a unified description, execution, measurement and storage of
distributed system experiments. ExCovery suports the Distributed
Embedded System (DES) wireless testbed at Freie Universität
Berlin. We present and discuss the results of the experiments
and show how SD responsiveness is affected by the position and
number of requesters and providers as well as the load in the
network. The results clearly demonstrate that in all but the most
favorable conditions, the configurations of current SD protocols
struggle to achieve a high responsiveness. We further discuss
results that reflect the long-term behavior of the wireless testbed
and how its varying reliability may impact SD responsiveness.

Index Terms—Responsiveness; Service Discovery; Wireless
Mesh Networks; Experiments; Zeroconf

I. INTRODUCTION

In Service-Oriented Architecture (SOA), the principle of dis-
coverability demands that service descriptions include struc-
tured data to facilitate publishing and discovering of individual
service providers [1]. Service Discovery (SD) deals with the
communication of this data. A set of abstract service classes
S can be provided on a set of concrete service providers P
which then use a Service Discovery Protocol (SDP) to make
the service known to requesting clients C. This process may
be supported by a set of service registries R. SD supports
two different architectures: Two-party, where all SD actors
A ⊆ P ∪ C and three-party, where A ⊆ P ∪ C ∪ R and
A ∩ R 6= ∅. In an adaptive or hybrid architecture SD can
switch between the two. A service client discovers providers
by a combination of passively listening to announcements and
actively sending requests, with retries in specific intervals.
Depending on role and architecture, different communication
types are used: unicast, multicast or broadcast.

SD is a real-time operation and one of its key properties is
responsiveness – the probability to finish successfully within

a deadline, even in the presence of faults [2]. More precisely,
responsiveness constitutes the probability that a SDP enumer-
ates a defined ratio of available provider instances x = p/P
within a deadline tD as required by the discovering client.
SD is an integral part of service usage and comprehensive
service dependability evaluation should include its responsive-
ness. This is because common dependability metrics, such as
availability and performability, are only independent of SD
responsiveness if a successful discovery is assumed at the
time of requesting a service. For example, the performability
of a service until a deadline decreases with decreasing SD
responsiveness, hence, a longer time needed to discover that
service with a certain probability: Less time to perform in
general means a lower probability to perform as required
[3]. On the other hand, reducing the time to discover the
service increases the risk of not finding it, in which case
it wouldn’t be able to perform at all. Unfortunately, until
now few works examine SD responsiveness and in service
dependability evaluation, it has generally been neglected.

For modern decentralized networks, such as wireless mesh
networks with possibly mobile nodes, SD becomes ever more
important as the number and position of providers may change
dynamically. Additionally, wireless mesh networks exhibit
complex fault behavior and fault dependencies [4]. As can be
seen in the model-based evaluation in [5], SD responsiveness is
difficult to predict in such networks and varies dramatically.
Optimizing the responsiveness of SD in these environments
should thus be a prime target of service network research.

The goal of this work is an experimental evaluation of re-
sponsiveness in wireless mesh networks, to demonstrate if and
how SD responsiveness changes depending on the position and
number of requesters and providers and depending on the load
on the network. We employ the ExCovery framework [6] for
experiments on dependability in distributed systems and run
several series of experiments to examine the responsiveness
of SD in wireless mesh networks. The presented research
complements the existing work by providing a comprehensive
experimental evaluation with a realistic fault model. The
experiments serve the following purposes:

1) They demonstrate how to use ExCovery for experiments
in the wireless DES testbed and how the comprehensive
range of measurements stored during runs facilitates
diverse types of analysis.



2) The analysis shows the long-term behavior of the DES
testbed and the effect of internal and external faults.
These faults are being recorded by ExCovery during
experiment execution and have to be taken into account
when interpreting the results. Internal faults contain
node crashes or clock drifts, external faults comprise all
types of wireless interference or also forced interruptions
during execution of experiments.

3) Third, the experiments allow a deep insight into SD re-
sponsiveness in wireless mesh networks. For several re-
alistic discovery scenarios, the responsiveness is shown
depending on the deadline tD of the discovery operation,
the distance of actor nodes, the load in the network and
the required number p of providers P to be discovered.
This analysis is done both for the individual SDP packets
as well as the complete discovery operation, which
includes retries by the requester in case response packets
do not arrive in time. The former allows to infer conclu-
sions for other application protocols which use similar
packets and can provide input for analytical models such
as in [5]. As such, the gained results could be used
to verify the validity of employing these models when
optimizing the responsiveness of SD configurations in
wireless mesh networks.

The remainder of this paper is structured as follows. After
an overview of related work in Section II, Section III provides
a brief presentation of the concepts used in ExCovery and
how it was used in the context of this work. The DES
testbed is introduced in Section IV. The experiment setup and
configurations can be found in Section V. Sections VI and
VII present and discuss the results of analysis. Section VIII
concludes the work.

II. RELATED WORK

A comprehensive description of SOA and its principles
can be found in [1]. Regarding discoverability, [7] provides
more details on service discovery operations and architectures.
An overview and comparison of current SDPs is presented
in [7], [8]. In [9]–[11], SDPs for pervasive and ubiquitous
computing systems are surveyed. Such systems are the target
environment of the experimental analysis in the paper at hand.
Dabrowski et al. evaluate different dependability properties
of existing discovery protocols in [12]–[14]. These include
update effectiveness, the probability to timely restore a con-
sistent state after failure, which resembles a specific case of
responsiveness. The foundations for the responsiveness metric
as used in this paper have been laid out in [2]. We refer to
[15] for a comprehensive definition of various other service
dependability metrics, among them performability [3].

Not considered in [12]–[14] was active SD responsiveness
during regular operation. Also, the evaluated protocols do
not include the widespread Zeroconf protocol [16]. Active
discovery using Zeroconf is evaluated in experiments in [17].
However, the fault model in [17] includes just packet loss
but no packet delay and the work investigates only a fully
connected, single hop network. Dittrich et al. [5] provide a

hierarchy of stochastic models to analytically evaluate the SD
responsiveness of common protocols based on the quality of
network links. They apply these models to wireless mesh net-
works, whose general problems and challenges are presented
in [4]. The results presented in the work at hand could serve to
validate the stochastic models in [5] by correlating model and
experiment results under similar conditions. Furthermore, parts
of the results may be used as input data for stochastic models
to evaluate SD responsiveness in diverse scenarios instead of
running time-consuming experiment series for each one of
them.

The ExCovery framework [6] has been developed recently
to support dependability research of distributed processes.
Its core is a formal experiment description that facilitates
automated checking, execution and additional features, such
as visualization of experiments. ExCovery is expected to
foster experiment repeatability, comparability and transparency
as it offers a unified experiment description, measurement
mechanism and storage of results and is described in detail in
[6], [18]. In this work, we will only highlight the main features
of ExCovery and focus on the description of the conducted
experiments and the analysis of their results.

III. ExCovery – THE EXPERIMENTATION ENVIRONMENT

As mentioned previously, all experiments were conducted
using the experiment environment ExCovery. While we refer
to [6] for a complete description of the framework, this
section will highlight how the major features were used for
the experiments on SD presented in Sections V,VI and VII.

The core of experiments carried out with ExCovery consists
of a formal description in the extensible markup language
(XML). An XML schema is provided with the framework
code, which is made available to interested researchers on
request. Four main parts are defined in the description of
experiments:
General This part defines several parameters describing gen-

eral information about the experiment to facilitate cate-
gorization, for example the name of the experiment and
the time it was started.

Platform The platform definition contains all concrete nodes
that take part in the experiment. Nodes are classified
into two types: Actor nodes take part in the process
under experimentation, in this case the discovery process.
Environment nodes take part in the specified environment
processes, such as load generation and fault injection.
All nodes help with regular routing. Figure 1 shows an
exemplary platform definition with four actor nodes to
carry out the SD operation and five environment nodes.

Factors The factor definition contains a list of factors and
their levels whose effect on the results is to be studied.
Concrete actor nodes are mapped to abstract roles of the
discovery process, such as requesters and responders. The
number of load generators, which are pairs of environ-
ment nodes, and the data rate per pair is defined. Also, the
number of repetitions of each factor combination is stated
as a special factor. An exemplary factor definition is listed



<platform_specs>
<description>
Nodes to be used during the experiment. Four
↪→ actors (one requester, three responders) and
↪→ five environment nodes for traffic generation.
</description>
<spec_node_mapping>
<spec_actor_map abstract_id="R0" id="t9-154"
↪→ ip="172.18.17.8" />
<spec_actor_map abstract_id="P0" id="t9-006"
↪→ ip="172.18.17.104" />
<spec_actor_map abstract_id="P1" id="t9-147"
↪→ ip="172.18.17.179" />
<spec_actor_map abstract_id="P2" id="t9-020"
↪→ ip="172.18.17.88" />
<spec_env_map id="t9-117" ip="172.18.17.52" />
<spec_env_map id="t9-k61" ip="172.18.17.92" />
<spec_env_map id="t9-169" ip="172.18.17.50" />
<spec_env_map id="t9-018" ip="172.18.17.14" />
<spec_env_map id="t9-022a" ip="172.18.17.80" />
</spec_node_mapping>
</platform_specs>

Fig. 1. Exemplary platform definition for an experiment description. The
abstract id allows to identify abstract nodes for the mapping to actor roles.
IP addresses help in filtering the raw capture files for packet based analyses.

<factorlist>
<factor usage="blocking" id="fact_nodes"
↪→ type="actor_node_map">
<description>Mapping of abstract nodes to actor
↪→ roles of the discovery process
</description>
<levels>
<level>
<actor id="requester">
<instance id="0">R0</instance>
</actor>
<actor id="responder">
<instance id="0">P0</instance>
<instance id="1">P1</instance>
<instance id="2">P2</instance>
</actor>
</level>
</levels>
</factor>
<factor usage="random" id="fact_pairs" type="int">
<description>
Number of node pairs for load generation,
↪→ randomly distributed in the network
</description>
<levels>
<level>10</level>
</levels>
</factor>
<factor usage="constant" id="fact_bw" type="int">
<description>Datarate per node pair</description>
<levels>
<level>100</level>
<level>500</level>
</levels>
</factor>
<replicationfactor usage="replication"
↪→ id="fact_replication_id" type="int">1000
</replicationfactor>
</factorlist>

Fig. 2. Exemplary factor definition for an experiment description. The factors
are explained within the definition code. The replication factor denotes the
number of experiment runs for each factor level combination.

in Figure 2. It maps the actor nodes from the platform
definition to requester and responder roles, defines 10
node pairs for load generation which will first have a data
rate of 100, then 500 kbit/s each. Each factor combination
will be run 1000 times as stated by the replication factor.
Since there is only one node mapping and one factor level
for the load generation, there will be 1000 runs for each
data rate.

Processes This part contains descriptions of experiment pro-
cesses, executed only by specific actor roles and environ-
ment processes, which are executed by possibly all nodes.
ExCovery describes processes as series of interdependent
actions and events. Due to space constraints, no full
description of the processes for the discovery actors and
environment nodes is shown here. A shortened version
can be found in [6], the full descriptions are available on
request together with the experiment results.

ExCovery executes an experiment on a dedicated master
node. The description is read and the described processes
are run with all factor and factor level combinations for
a given number of repetitions. Measurements during these
runs are stored in temporary directories on both the nodes
and the master and comprise events defined in the process
descriptions, such as Discovery Request Sent or Discovery
Response Received, and network packets belonging to these
processes.

ExCovery is designed to provide a consistent state for each
repetition and to minimize effects of any process not described
in the experiment description, including its own processes.
As such, each repetition consists of a preparation phase, a
measurement phase which is the core of the experiment and
a cleanup phase. During the measurement phase, only the
processes defined in the experiment description are executed
and their effects recorded by specified nodes. Only after
completing all runs these measurements are imported from
their temporary directories, conditioned to contain a globally
valid time stamp and written to a database. This database
includes the experiment description, logged events and packets
of the described processes and diverse information about the
state of the testbed itself. The latter can be used to further
decrease the effect of external processes (see Sections VI-A
and VI-B). The database represents one full experiment and
can be shared to allow transparent reusability and repeatability.

For the work at hand, a set of specific analysis functions was
added to the framework code to support the presented results
(see Sections VI and VII). Additionally, diverse enhancements
were developed to improve monitoring during execution of
experiments, given the long durations of the individual ex-
periments (see Section V). Finally, the framework code for
the execution of experiments was redesigned to reduce the
duration of experiments, especially when they are partially
completed and resumed. Due to space constraints and since
they are not the focus of this work, the implementation of
these changes will not be discussed in detail. All of them have
been merged to the main framework code respository and are
available on request.
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Fig. 3. Overview of the wireless DES testbed. Three buildings can be
distinguished, nodes colors define their building floors.

IV. THE WIRELESS TESTBED

The wireless DES testbed consists of roughly 130 uniform
nodes spread indoors and outdoors over three adjacent campus
buildings at Freie Universität Berlin (FUB). An overview of
the testbed topology is depicted in Figure 3 which shows the
geographical location of the nodes in buildings a3, a6 and t9.
Nodes have been color-coded to distinguish the different build-
ing floors. Special nodes that are the focus of the following
analysis are labeled with their identification string. Wireless
network links have been left out for reasons of visibility. While
the mesh network forms reasonably dense clouds within the
buildings, the connections between buildings are not optimal.
Building a6 and t9 are connected by several links but a3 and
a6 are often only connected by a single bridge, depending on
the overall wireless signal quality. More in-depth information
about the properties of the DES testbed can be found in [19].

ExCovery was chosen to support the DES testbed as the
first testbed for various reasons. First of all, as opposed to
a simulation environment, it allows to evaluate processes in
a network with realistic fault behavior. Second, the DES
testbed allows to generate manifold topologies due to its wide
distribution of nodes on campus and the ability to manipulate
their wireless signal range. Finally, the nodes run a relatively
modern Linux distribution which simplifies the development
and deployment of new software. These reasons were also
valid for the decision to use the DES testbed in this work.

However, ExCovery is designed to support a range of different
environments. The requirements that a testbed needs to fulfill
to be supported by ExCovery are listed in [6].

As service discovery protocol, the wide-spread Zeroconf
protocol suite based on multicast DNS [20] and DNS-based
service descriptions [21] was used. A full description of the
protocol is found in [16]. Zeroconf implements a two-party
architecture and all messages, requests and responses, are sent
via multicast. Multicast provides considerable challenges in
wireless mesh networks that need to rely on costly flooding
mechanisms to deliver these messages. Nevertheless, Zeroconf
was developed for mobile and dynamic networks and both its
focus and prominence make it a prime target for examination.
Additionally, the results presented in Sections VI and VII
provide insight also in the behavior of other SD protocols,
which implement the same operations.

V. EXPERIMENT SETUP

The experiments have been run in three series from May
2013 to May 2014. Each series took several weeks to
complete, due to the overhead involved when carrying out
experiments. Every single discovery operation needs to be
initialized properly, measured and cleaned up (see Section
III). During initialization, the SD daemons are started on all
providers. Then, all SD packets are dropped on all nodes for a
specific period to prevent service announcements and delayed
responses from previous runs on the network. After dropping,
the load generation is started. To simulate additional load
on the network, environment nodes were chosen randomly
to exchange UDP [22] packets at a given data rate. UDP
was chosen due to its ”send and forget” strategy, to be able
to control the data rate at the given level without corrective
measures such as flow and congestion control.

During the measurement phase, the SD process is started
and SD packets captured as well as defined SD events
recorded, such as ”search started” or ”provider found”. Either
when a required number of providers has been found or a time
out has been reached, the measurement phase ends and cleanup
starts, where load generation is stopped and SD daemons are
shut down. Due to the long time-outs of current SD protocols,
one experiment run usually takes between 45 and 90 seconds
to complete. The total number of runs in all series was 32004
of which 26670 provided valid results for analysis. Among
the causes of rendering a run invalid were complete network
outages or missing connectivity on too many actor nodes of
the discovery operation. While requesters had to be connected
at any time to produce valid results, we decided that up
to 10 percent of providers where allowed to be temporarily
disconnected.

The first two series of experiments cover the discovery of a
single provider by a single client. This is a common scenario
in service networks: A client needs to use a specific service
in the network, such as the printing on a specific printer
or the backing up to a network-attached storage (NAS). In
both series, the requesting node was t9-105. In one series
the provider was t9-154 to cover scenarios where both nodes
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Fig. 4. Overview of building t9 of the wireless DES testbed. Nodes
colors define their building floors. Circle nodes are providers, crosses denote
environment nodes for load generation. The requester t9-154 has been labeled.

TABLE I
EXPERIMENT CONFIGURATION OF EACH SERIES

Experiment Series I Series II Series III

Number of nodes (max) 115 119 51

Nodes in buildings t9, a3, a6 t9, a3, a6 t9
Number of requesters 1 (t9-105) 1 (t9-105) 1 (t9-154)
Number of responders 1 (a3-119) 1 (t9-154) 1 . . . 30

Number of load generators 0 . . . 50 0 . . . 50 20

Bitrate per generator (kbit/s) 72 72 0 . . . 13824

are in one well connected cloud. In the second series the
provider was a3-119 to study the effects on SD responsiveness
in scenarios where nodes are connected with sparse and
possibly weak links. All other nodes participated in randomly
distributed load generation at various levels. The position of
nodes within the network is depicted in Figure 3.

A separate series of experiments was carried out only in
the dense cloud of building t9. Requester t9-154 was trying
to discover up to 30 service providers while the remaining
nodes generated load in the network. This reflects a scenario
where a client wants to discover as many providers of a given
service as possible to select the best one among them. The
topology of these experiments is illustrated in Figure 4. Nodes
can be distinguished by their form and color. Again, the colors
define the three building floors the nodes reside on. The shapes
define the node type: Circle nodes are providers, cross nodes
are environment nodes used for load generation.

The most important configuration parameters of the three
experiment series are summed up in Table I. The full ex-
periment data, including XML descriptions, log files, packet
captures and discovery event measurements are available on
request for the research community to foster the transparency
and repeatability of the presented results.

The results focus on two different sets of analyses of SD
responsiveness. First, general measurements of the behavior of
the testbed for the duration of the experiments are presented.
These cover the variation of response times under similar
conditions (see Section VI-A) and the clock drift of the

network nodes (see Section VI-B) over time. The results
should illustrate the behavior of the DES testbed over time and
help to interpret the results of the discovery process analyses,
which are done in the second set of analyses and presented
in Section VII. It should be pointed out that results can only
be representative for the scenarios which can be realized with
the DES testbed. Uniform grid topologies, for example, cannot
be created with the testbed. Thus, the significance of the
results for such scenarios needs to be inspected before drawing
conclusions.

VI. EXPERIMENT RESULTS – TESTBED

Ideally, a testbed should provide a controlled environment
over a series of experiments. More precisely, held-constant
factors should be known and accounted for in a later analysis
and the effect of allowed-to-vary factors should be minimized.
Nuisance factors with an unwanted or unknown effect on the
results should be eliminated as much as possible. The different
types of factors are described in [6].

Such stable and known conditions can usually only be
achieved in simulations. In physical testbeds, especially wire-
less testbeds which are highly sensitive to external inter-
ference, the different nuisance factors are both difficult to
determine and to measure. The probability of unwanted effects
on the results is even higher the longer it takes to run the
experiments. Given that the experiments carried out for this
paper took several weeks to complete, a better knowledge
of the testbed behavior was necessary. Although we cannot
determine the source of all nuisance factors, we can measure
them and show their effect.

A. Response Times over All Runs

Figure 5 illustrates the effects of internal an external faults
on the results for a part of four sets of experiments from
Series I and II (see Table I). The response times of discovery
operations, which in this case are the times for the first
response to arrive at the requester, are plotted over 1000
experiment runs. The requesting node is t9-105, the providers
are t9-154 (Figures 5a and 5c on the left side) and a3-119
(Figures 5b and 5d on the right side). Nodes t9-105 and t9-
154 are in one cloud within the same building while t9-105
and a3-119 cover the maximum hop distance in the network.
The node positions in the mesh network are shown in Figure 3.
For each node pair, results are shown without additional load
in the network (Figures 5a and 5b in the upper row) and with
an additional load of 40 voice-over-IP streams with 72 kbit/s
each, which amounts to roughly 2.8 Mbit/s traffic overall in
the network (Figures 5c and 5d in the lower row).

In the graphs, the dots reflect response times of individual
discovery operations while the line denotes a moving average
over 20 operations. Depending on the additional load on the
network, the 1000 runs cover a period of 15−20 hours so the
graphs are showing long-term effects in the testbed. One can
see that the response times generally increase with the load
in the network and the distance of requester and provider. At
times 1, 3, 7 and 15 seconds we see a significant accumulation



(a) Short distance, provider t9-154 (b) Maximum distance, provider a3-119
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Fig. 5. Response times in testbed over 1000 experiment runs. Requester in all scenarios is t9-105, providers t9-154 and a3-119. Figures 5a and 5b show
results without additional load in the network, Figures 5c and 5d show results with an additional load of 40 voice-over-IP streams with 72 kbit/s each.

of responses. This corresponds to the default retry intervals of
the Zeroconf discovery protocol, which starts with a timeout
of one second and then doubles this timeout on every retry.
The accumulation of responses very close to the retry intervals
hints at packet loss having the decisive impact on response
times: Either packets arrive in time or they get lost. With
higher loads and distances, however, also packet delay comes
into play which is especially visible in Figure 5d, where the
accumulation at the retry intervals is less pronounced and
response times generally have a wider distribution.

While the responsiveness over load and distance will be
examined more in detail in Section VII, it can be noted that
the response times are not independent over time. There are
periods of consistently higher response times, such as in Figure
5b between runs 120 and 180 or in Figure 5c between runs 820
and 900. Given that these intervals span roughly an hour of
experiment time, it seems highly improbable that these effects
are random statistical accumulations. Instead, they hint at

external causes that degrade the overall quality of the wireless
testbed. Furthermore, those events happen very frequently.
Finding the root cause of such anomalies is out of the scope
of this work. The results are meant to demonstrate instead that
any analysis based on average measurements should be done
very carefully. Chosing the measurement history window size
too big can easily lead to over- or underestimating the testbed
quality. Also, it is important to measure and store all historical
data, as does the ExCovery framework, to be able to detect and
visualize such effects.

B. Node Clock Drift over Time in Testbed

While Section VI-A shows the effects of external factors on
the experiment results, there are also internal factors that need
to be measured. In this section, we focus on the clocks on the
individual nodes. All nodes in the network synchronize their
clocks before running experiments but to not interfere with
the measurements, this is not done anymore during experiment
execution and their clocks drift apart.
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Figure 6 shows the variations of clock offsets as measured
over 1200 experiment runs (approximately 20 hours) in Series
III. Each of the three lines represents the offset of a different
node to requester t9-154. The lines abruptly change at the same
positions of run 175 and 480. At run 175, the experiment was
interrupted for an extended period so the clocks continued
to drift apart before resuming experiments. This leads to the
jump in the lines in direction of the clock drift relative to the
reference node t9-154. At run 480, the experiments needed
to be interrupted because the time slot in the testbed ended.
The nodes were rebooted multiple times for experiments
carried out by other DES testbed users. Before restarting the
series, the nodes were manually synchronized, bringing the
offset to reference node t9-154 close to zero. Between those
characteristic steps, the clocks steadily drift apart from each
other. However, not only does every node drift differently from
the others, even the drift of the individual nodes varies over
time, as can be seen for node t9-011, which runs faster than
the reference node t9-154 until experiment run 480 but after
that runs slower.

Clock synchronization is highly important for the analysis
of real-time problems, such as service discovery. Given the
observed behavior, it is obvious that the current testbed syn-
chronization methods are not sufficient to guarantee consistent
behavior over multiple hours of testbed usage. This justifies the
approach of ExCovery to measure the time difference between
the nodes on every single run. After the experiments are done,
the stored event and packet times are corrected using these
offsets before being imported to the result database for further
analysis. This reduces the absolute synchronization error of
all nodes to the precision of the measured timestamps, which
improves measurement accuracy and reduces the likelihood
of causal problems during subsequent analysis. A future im-
provement to ExCovery would be to optionally support time
synchronization tasks during the initialization phase of each
experiment run.

VII. EXPERIMENT RESULTS – SERVICE DISCOVERY

After showing the variations of testbed behavior in Section
VI, this Section focuses on the discovery process itself. A
discovery operation consists of an initial request and a series of
retries if an insufficient number of responses is received until
a timeout. For each provider, only a single response packet
needs to arrive at the requester. Given a total number of m
providers, an operation to discover n providers is successful,
when n providers have received at least one request packet
and from each of these n providers one response has arrived
at the requester within deadline tD. Thus, the minimum of
multicast messages to be sent would be n + 1, not including
duplicate transmissions in the network due to the multicast
flooding. Consequently, the maximum of messages for each
request and subsequent retry is m+ 1. It needs to be pointed
out that the actual number of transmissions inside the mesh
network is considerdably higher and grows with an increasing
number of collisions.

The probability of a request to arrive at n providers and
of n responses from those providers to arrive until tD at the
requester denotes the responsiveness R(tD) of the discovery
operation. In this section, we will investigate the behavior of
R(tD) under varying influences. The SD protocol is Zeroconf ,
which uses DNS packets sent via multicast for both requests
and reponses.

A. Responsiveness over Time

The first analysis covers the responsiveness R(tD) of SD
over time. It examines how R(tD) increases with tD, depend-
ing on the distance between requester and provider and the
load in the network. To be able to isolate the effect of node
positions on the results, only data from experiment Series I and
II was used (see Section V and Table I). Thus, the discovery
operations were carried out by only two actors, one requester
t9-105 and one provider: t9-154 for a short distance and a3-
119 for the maximum distance in the network. The respective
node positions are depicted in Figure 3. All DES testbed nodes
participated in routing network packets.

Figure 7 illustrates the results. The upper graphs show
the responsiveness of the discovery operation over time, for
providers t9-154 and a3-119. The two curves reflect the
responsiveness for different load conditions. Responsiveness
increases with every request being sent, which corresponds
to the steps in the curves. It can be seen that R(tD) is
generally lower with higher distance. It can further be noted
that additional load in the network has a dramatic effect on
the packet loss rates and considerably decreases R(tD). The
40 VoIP streams are randomly distributed in the network,
changing each experiment run. They impose a combined load
of 2.8Mbit/s, which does not seem much compared to the
maximum theoretical data rates in the network. Still, even with
tD = 18s there is only a 50% chance of discovering provider
a3-119 under these conditions.

The results are in line with the ones presented in [17].
Current service discovery protocols work well when conditions



(a) Provider t9-154 (b) Provider a3-119

(c) Provider t9-154 (d) Provider a3-119

Fig. 7. Responsiveness over time for two different providers under varying load. Figures 7a and 7b show the complete service discovery operation, Figures
7c and 7d individual request/response pairs.

are close to perfect but their responsiveness decreases signifi-
cantly when conditions deteriorate. Their static retry strategies
struggle in unreliable networks. However, packet loss is not the
only factor impacting R(tD), especially at higher loads, the
delay of individual packets becomes important, smoothening
the steps in the curve, an effect that is also visible in Figure
5d. The analytical models in [5] hint at possible advantages
in conditions when SDPs (namely SLP [23] and SSDP [24])
use the more reliable unicast instead of multicast for certain
messsages. To validate these results in future work, ExCovery
is extendable to support these protocols.

The lower graphs of Figure 7 show the responsiveness
of individual request/response pairs within an SD operation.
Here, R(tD) denotes the probability that a response to a given
request arrived within tD. The characteristics of the curves
confirm the findings on R(tD) for the complete discovery
operation, with R(1) being roughly the same for the corre-
sponding graphs of each provider. The results are included

here because they are not based on the events as measured on
the discovery layer but instead use raw packet captures done
by ExCovery. As such, ExCovery supports diverse analysis
types using the same result database. Packet response times
as in Figures 7c and 7d can be used, for example, as lower
level input data in analytical responsiveness models as in [5]
or when evaluating different protocols that user similar types
of packets.

B. Responsiveness over Load

This analysis investigates in more detail how the responsive-
ness decreases with the level of additional load in the network.
For this, fixed deadlines tD were chosen and R(tD) calculated
for each load level. The results are illustrated in Figure 8 which
shows for the two providers t9-154 and a3-119 how R(tD)
decreases with increasing load. Figure 8a shows the results for
tD = 7s, which corresponds to the time at which the third retry
will be triggered, reflecting the responsiveness when doing two



(a) Responsiveness at deadline tD = 7s (b) Responsiveness at deadline tD = 1s

Fig. 8. Responsiveness over increasing load without (Figure 8b) and after 2 retries (Figure 8a) for two different providers.

retries. Figure 8b shows the results for tD = 1s, just before
the first retry would get sent. The curves are the regression
function over all data points of a specific provider.

Due to space constraints, only these two results are shown
but from all results can be deducted that the slope of the
regression curve generally gets steeper with shorter deadlines.
This means that the load has a higher impact on R(tD) the less
time there is to complete the discovery operation. One reason
for this behavior is the impact of delay on R(tD). However,
this effect is not sufficiently understood and warrants more
in-depth evaluation in future research.

C. Responsiveness over Number of Providers

The final analysis targets how SD responsiveness changes
with the number of needed service providers. The data used for
this analysis were from experiment Series III (see Section V
and Table I). One requester and 30 providers were deployed in
the dense mesh cloud of building t9. This was done to make
sure that the distance of providers to the requester had less
impact on the results. Instead we wanted to see how discovery
performs under varying load conditions. Because there were
less nodes for load generation, the data rate per generator
pair was increased for a fixed number of 10 node pairs.
Environment nodes and providers were distributed randomly in
the network. The topology can be seen in Figure 4, which also
shows the position of the different types of nodes, requester,
provider and environment. This configuration reflects basically
any SD scenario where a client tries to enumerate as many
service providers of a given service class as possible to select
the best n providers according to its requirements.

In the analysis, it was examined for different load levels
how the responsiveness decreases with an increasing number
of providers needed for successful discovery. Results are
depicted in Figure 9. The load levels reflect the combined
data rate of all 10 load generation streams. This means that
at the highest traffic level, each stream had a data rate of

1.7Mbit/s. With the given distribution of nodes, this was also
the saturation level. Results did not get significantly worse
with higher load. At the same time, the network did not get
permanently partitioned which means that packets exchanged
among the nodes to generate the routing topology managed to
get transmitted at a sufficient rate.

The results demonstrate that deploying more services is
not generally a valid solution to increase responsiveness in
wireless mesh networks. They confirm the preliminary findings
in [17] that with high load, hence, increased fault intensity, the
responsiveness of service discovery decreases exponentially
with the number of services needed. This effect is not visible
with low failure intensity. One can see that at very high loads,
discovering more than 20 nodes was impossible. Although not
shown in Figure 9, this was an almost identical node set over
all runs at that load level. This is because some nodes, although
not partitioned from the rest of the network, were effectively
blocked off SD by environment nodes that were transmitting at
very high data rates in their vicinity. Since packets for topology
maintenance managed to get transmitted at sufficient rates this
hints at profound deficiencies of the Zeroconf protocol and
maybe even current discovery protocols in general. Further
research on the transmission mechanisms (unicast or multicast)
and the retry intervals is needed to optimize responsiveness in
such scenarios.

VIII. CONCLUSION AND OUTLOOK

The ExCovery experiment framework was employed to run
several series of experiments to examine the responsiveness
of service discovery (SD), the probability to discover service
providers within a deadline, even in the presence of faults.
Experiments were run in the wireless DES testbed at Freie
Universität Berlin. The analysis provides an extensive evalua-
tion of discovery responsiveness with a realistic fault model.

First, it is demonstrated how to use ExCovery for experi-
ments in the DES testbed and how the broad range of measure-
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Fig. 9. Responsiveness over number of needed service providers for different
load levels.

ments stored during runs enables diverse types of analysis. The
core of ExCovery is a formal experiment description that sup-
ports automated checking, execution and additional features,
such as visualization of experiments. ExCovery is expected to
foster experiment repeatability, comparability and transparency
as it offers a unified experiment description, measurement
mechanism and storage of results. To facilitate transparency
and repeatability, all experiment descriptions and results of this
work are made available for interested researchers on request.

Second, an analysis of the long-term testbed behavior and
the effects of internal and external faults is carried out. Internal
faults contain node crashes or clock drifts, external faults
comprise all types of wireless interference or also forced
interruptions during experiment execution. It is shown that the
effect of these faults is considerable and has to be taken into
account when interpreting results.

Third, for several realistic discovery scenarios the respon-
siveness is evaluated depending on the deadline of the discov-
ery operation, the distance of nodes, the load in the network
and the required number of providers to be discovered. Anal-
ysis is performed both for the individual discovery packets
as well as the complete discovery operation, which includes
retries in case packets do not arrive in time. The former
allows to infer conclusions for other application protocols
which use similar packets and can provide input for existing
and future analytical models which use lower network level
measurements. As such, the presented results are applicable to
various types of optimizations in wireless mesh networks.
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